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The current study examined whether there are coherent individual differences in attention control abilities
and whether they are related to variation in working memory capacity. Data were pooled from multiple
studies over 12 years of data collection. Mega-analyses on the combined data set suggested that most of
the attention control measures had adequate reliabilities and were weakly to moderately related to one
another. A number of latent variable mega-analyses suggested that the attention control measures loaded
onto a broad attention control factor and this factor was consistently related to working memory capacity.
Furthermore, working memory capacity was generally related to each individual attention control
measure. These results provide important evidence for the notion that there is a coherent attention control
factor and this factor is related to working memory capacity consistent with much prior research.
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The ability to control our attention to focus on important infor-
mation and block potential distracting information is critical for a
number of tasks and situations we encounter on a daily basis.
These range from the relatively mundane such as trying to con-
centrate during a boring meeting and prevent daydreaming about
an upcoming vacation to concentrating on driving during a bliz-
zard while your child is fussy in the backseat. In both cases,
attention control processes are needed to maintain attention on
task. By attention control we mean the set of processes that allow us
to focus selectively and actively maintain task-relevant information in
order to guide thought and action in the presence of internally or
externally distracting information. Importantly, it is thought that in-
dividuals differ greatly in their attention control (AC) abilities. Indi-
viduals high in AC are better at controlling aspects of their attention
to actively maintain goal-relevant information to successfully perform
a task than are individuals low in AC. Furthermore, these differences
are especially pronounced under conditions of high interference or
distraction in which attentional capture away from task- or goal-
relevant information is likely (e.g., Engle & Kane, 2004). Thus, high
AC individuals are better at preventing interference or distraction than
low AC individuals, and this AC ability is needed in a host of
activities regardless of specific stimulus or processing domains. The
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AC construct is also sometimes referred to as inhibition, interference
resolution, executive attention, or executive control and is typically
measured with tasks that assess response inhibition and/or interfer-
ence control (e.g., Chuderski & Jastrzebski, 2018; Engle & Kane,
2004; Friedman & Miyake, 2004; Kane et al., 2016; Karr et al., 2018;
Rey-Mermet et al., 2018; Rey-Mermet et al., 2019; Von Gunten et al.,
2019) and is likely similar to the Common Executive Function con-
struct noted by Miyake and Friedman (2012). Additionally, as seen
below, we and others have included measures of sustained attention
into the overall measurement of AC abilities. Thus, the current AC
construct is conceptually similar to related constructs.

If individual differences in AC are important, then AC abilities
should be related to other important cognitive abilities such as
working memory and fluid intelligence. Indeed, one prominent
theory of individual differences in working memory capacity sug-
gests that a main contribution to variation in working memory
capacity and a major reason that working memory capacity
(WMQ) is related to fluid intelligence are differences in AC
abilities (e.g., Engle, 2002; Engle & Kane, 2004; Kane & Engle,
2002). As such, AC abilities have been hypothesized as being a
core cognitive construct that lies at the heart of individual differ-
ences in broad abilities. Recently there has been considerable
debate as to whether there is evidence for AC abilities as a
psychometric construct with some studies suggesting that there is
an AC latent factor that is related to other cognitive abilities such
as WMC, whereas other studies suggest there is little evidence for
AC as a psychometric construct.

Evidence Consistent With Individual Differences in
Attention Control

Evidence in support of the claim that there are important indi-
vidual differences in AC abilities comes from a variety of studies
that have examined relations between performance on various AC
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tasks and WMC. For example, individual differences in WMC are
related to performance on AC tasks such as dichotic listening
(Colflesh & Conway, 2007; Conway et al., 2001), Stroop interfer-
ence (Kane & Engle, 2003; Hutchison, 2011; Long & Prat, 2002;
Meier & Kane, 2013; Morey et al., 2012; Unsworth, Redick, et al.,
2012), flanker interference (Heitz & Engle, 2007; Redick & Engle,
2006; Unsworth, Redick, et al., 2012), performance on the anti-
saccade task (Kane et al., 2001; Unsworth, Schrock, & Engle,
2004), performance on the psychomotor vigilance task (Unsworth,
Redick, Lakey, & Young, 2010; Unsworth & Robison, 2020),
performance on the Sustained Attention to Response Task (SART;
McVay & Kane, 2009), performance on versions of go/no-go tasks
(Redick et al., 2011), performance on the AX-CPT task (Redick,
2014; Redick & Engle, 2011; Richmond et al., 2016), performance
on cued visual search tasks (Poole & Kane, 2009), and perfor-
mance on some versions of the Simon task (Meier & Kane, 2015;
Weldon et al., 2013). Additional research comes from a number of
latent variable studies that have demonstrated that AC tasks like
antisaccade, Stroop, flankers, psychomotor vigilance, go/no-go,
and others are weakly to moderately correlated with one another
and tend to load on the same factor in a confirmatory factor
analysis (e.g., Chuderski et al., 2012; Chuderski & Jastrzebski,
2018; Draheim et al., 2020; Friedman et al., 2008; Friedman &
Miyake, 2004; Gértner & Strobel, 2019; Himi et al., 2019; James
et al., 2018; Kane et al., 2016; MacKillop et al., 2016; McVay &
Kane, 2012; Miyake et al., 2000; Paap et al., 2020; Redick et al.,
2016; Robison & Unsworth, 2018; Shipstead et al., 2014; Stahl et
al., 2014; Unsworth & Spillers, 2010; Unsworth & McMillan,
2014, 2017; Unsworth et al., 2014; Venables et al., 2018; Von
Gunten et al., 2019; Was, 2007). This latent AC factor tends to
correlate strongly with latent WMC (e.g., Chuderski & Jastrzebski,
2018; Kane et al., 2016; McVay & Kane, 2012; Redick et al.,
2016; Shipstead et al., 2014; Unsworth & Spillers, 2010; Unsworth
& McMillan, 2014, 2017; Unsworth et al., 2014), fluid intelligence
(Chuderski & Jastrzebski, 2018; Redick et al., 2016; Shipstead et
al., 2014; Unsworth & Spillers, 2010; Unsworth & McMillan,
2014, 2017; Unsworth et al., 2014), and long-term memory factors
(Shipstead et al., 2014; Unsworth, 2019; Unsworth & Spillers,
2010; Unsworth et al., 2014). For example, Unsworth and Spillers
(2010) had participants perform a number of AC tasks (antisac-
cade, color-word Stroop, arrow flankers, and psychomotor vigi-
lance) along with measures of WMC, fluid intelligence, and long-
term memory. They found that all of the AC tasks correlated and
loaded on the same factor. Importantly, this latent AC factor was
correlated with WMC (.58), fluid intelligence (.45), and long-term
memory (.60). Similarly, Unsworth and McMillan (2014) had
participants perform five AC tasks along with measures of WMC
and fluid intelligence. Unsworth and McMillan found that all of
the AC tasks loaded onto a latent AC factor and this factor was
correlated with WMC (.62) and fluid intelligence (.78). Similar
results were found by Redick et al. (2016) who administered six
AC tasks along with multiple measures of WMC and fluid intel-
ligence. Reanalyzing their data, Unsworth et al. (2015) found that
all of the AC tasks loaded onto an AC latent factor and this factor
was correlated with both WMC (.76) and fluid intelligence (.75).
Thus, there seems to be considerable evidence for the notion that
there are coherent individual differences in AC abilities and these
AC abilities are related to other cognitive abilities including
WMC.

Recent research has also suggested that AC abilities are related
to self-reports of off-task thinking during the AC tasks (Kane et al.,
2016; McVay & Kane, 2012; Robison & Unsworth, 2018; Un-
sworth & McMillan, 2014, 2017). That is, those participants who
report more mind-wandering and external distraction during the
AC (and other) tasks tend to perform worse on those very same
tasks. This suggests that the ability to control attention to task-
related distractors (i.e., flashing cues in the antisaccade, distractor
items in flankers) shares considerable variance with the ability to
control attention to task-irrelevant distractors (i.e., mind-
wandering about a fight with your spouse, distraction from a
flickering overhead light in the run room). Furthermore, individual
differences in AC abilities assessed in the laboratory even seem to
predict real-world attention failures in some situations (Kane et al.,
2017; Unsworth, McMillan, et al., 2012; Unsworth & McMillan,
2017). For example, Unsworth, McMillan, et al. (2012) had par-
ticipants perform a number of tasks in the laboratory (AC, WMC,
prospective memory, retrospective memory) and then carry a diary
around for a week logging their various cognitive failures. We
found that the most common everyday attention failures (dis-
tracted during class, mind-wandering during class; distracted dur-
ing study) loaded onto a common latent factor and this factor was
correlated with AC abilities assessed in the laboratory (—.53) and
WMC (—.46). These results provide important ecological validity
for individual differences in AC abilities.

In the studies noted above, AC was treated as a single unitary
construct, but several studies have suggested that AC abilities
might be better conceived as several distinct, yet interrelated
abilities. For example, Friedman and Miyake (2004; see also
Pettigrew & Martin, 2014; Stahl et al., 2014) examined the notion
that prepotent response inhibition (measured with tasks like anti-
saccade and Stroop) was distinct from resistance to distractor
interference (measured with tasks like flankers). They found that
the tasks were weakly related and loaded onto two distinct factors.
Furthermore, they found that the prepotent response inhibition and
resistance to distractor interference factors were correlated (.67),
suggesting that they shared considerable variance, but were likely
distinct. More recently, Kane et al. (2016) tested a similar factor
structure to assess differences between the ability to restrain
attention and prevent prepotent responses from guiding behavior
(e.g., preventing the flashing cue in the antisaccade task from
capturing attention) and the ability to constrain attention to target
items among distractors (e.g., to zoom attention in on target items
in the flanker task). Participants performed multiple restraint and
constraint tasks along with measures of working memory capacity.
Kane et al. found that restraint and constraint could be modeled as
two separate factors that were strongly correlated (.60) and both
were related to WMC (restraint = —.64; constraint = —.40) and
off-task thinking (restraint = .37; constraint = .33). Reanalyses of
Redick et al. (2016) also suggests the presence of both restraint and
constraint factors that are correlated with each other (.74) and with
WMC (restraint = —.89; constraint = —.53). Thus, despite limited
research, several studies suggest that AC abilities can be broken
down into distinct restraint and constraint abilities. Additional
research has suggested the possibility of a third subcomponent of
AC abilities in terms of the ability to sustain attention across both
short and long intervals and prevent lapses of attention (Kane et
al., 2016; Unsworth, 2015; Unsworth, Spillers, et al., 2009; Un-
sworth et al., 2010; Unsworth & Robison, 2020; Unsworth &



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

INDIVIDUAL DIFFERENCES IN ATTENTION CONTROL 3

Spillers, 2010; Unsworth et al., 2020). This ability is seen as
important even in situations and tasks were there are really no
strong task-relevant distractors (i.e., no flashing cues, no flankers),
but where it is critical to keep attention focused on the current task
to prevent off-task distractors (mind-wandering) from hijacking
attention away. Prior research has shown that measures of restrain-
ing, constraining, and sustaining attention load onto the same AC
factor that is related to other factors (Unsworth, Spillers, et al.,
2009; Unsworth & Spillers, 2010; Unsworth & McMillan, 2014;
Unsworth, McMillan, et al., 2012). Additionally, Unsworth and
Robison (2017b) found that it was possible to extract a higher-
order AC factor based on lower-order restraint/constraint, sustain,
and off-task thinking factors and this higher-order AC factor was
related to WMC. Thus, recent research suggests that AC abilities
can be fractionated into distinct, yet correlated abilities and these
distinct AC abilities can be accounted for by a higher-order AC
factor. Collectively, prior research suggests that there are robust
individual differences in AC abilities that are related to other
important cognitive abilities such as WMC.

Evidence Inconsistent With Individual Differences in
Attention Control

Despite considerable evidence for individual differences in AC
and their relation to WMC, a number of studies have cast doubt on
the existence of AC as a construct. Specifically, a number of recent
studies have suggested that many AC tasks demonstrate weak and
near zero correlations at the task level, resulting in an inability to
find a coherent latent AC factor (e.g., De Simoni & von Bastian,
2018; Girtner & Strobel, 2019; Keye et al., 2009; Krumm et al.,
2009; Rey-Mermet et al., 2018, 2019, 2020; Wilhelm et al., 2013;
see also Karr et al., 2018). Thus, unlike the prior research dis-
cussed above, these studies suggest that AC tasks do not correlate
and there is not a general AC factor. For example, Rey-Mermet et
al. (2018) administered 11 AC tasks to a sample of older and
younger adults. Rey-Mermet et al. found that although most of the
tasks had decent reliability estimates, the correlations among the
tasks were relatively weak with most correlations hovering near
zero. Fitting a one factor model in which all of the AC tasks loaded
onto a single factor resulted in a good fit to the data with most of
the tasks loading (although many weakly) onto the general factor.
Fitting a two-factor model in which prepotent response inhibition
(restraint) and resistance to distractor interference (constraint)
were modeled as separate factors resulted in a better fit to the data
and suggested that the two factors were correlated (.64) similar to
prior research. Importantly, however, this correlation was not
significant, likely due to an incredibly large standard error. Fur-
thermore, computing Bayes Factors suggested ambiguous evi-
dence for whether there was a correlation between the two factors.
Given weak task-level correlations and ambiguous evidence for
the latent factor structure, Rey-Mermet et al. suggested that there
is not a general AC construct, but rather individual differences
reflect task-specific abilities. Rey-Mermet et al. (2018) further
suggested that prior research which has found a common AC
factor were likely influenced by episodic memory and associative
learning abilities which were confounded with many of the AC
tasks. As such, they suggested that there is weak evidence for AC
abilities as a distinct psychometric construct.

In another recent study, Rey-Mermet et al. (2019) again exam-
ined whether a common AC factor could be found. In this study,
Rey-Mermet et al. suggested that prior research which has found a
coherent AC factor which was related to other abilities was likely
due to the fact that the AC tasks were confounded with general
processing speed (see also Jewsbury et al., 2016). That is, many
AC tasks rely on reaction time (RT) as the main dependent
measure (or differences in RT), and thus individual differences in
performance may be simply due to differences in processing speed.
Indeed, several prior studies have found strong relations between
AC factors and processing speed factors (Friedman et al., 2008;
James et al., 2018; Salthouse, 2005; Salthouse et al., 2003) and
some studies have had to merge the AC and processing speed tasks
into a single factor (Hedden & Yoon, 2006). Thus, it seems
possible that some prior studies were not assessing AC abilities,
but were actually assessing processing speed. To examine this,
Rey-Mermet et al. (2019) used a response-deadline procedure to
calibrate the time to respond for each participant in each task in
order to potentially control for processing speed differences,
speed—accuracy trade-offs, and to move AC variance into accu-
racy. Participants performed seven AC tasks along with measures
of WMC and fluid intelligence. Although these new accuracy-
based AC tasks demonstrated good reliability, the correlations
among the measures were uniformly weak and near zero. Similar
to their prior research, Rey-Mermet et al. (2019) were unable to
find a coherent AC factor. Furthermore, examining relations be-
tween WMC and fluid intelligence with each AC task suggested
that none of the relations were significant. Rey-Mermet et al.
(2019) suggested that the results challenge the existence of AC as
a psychometric construct and challenge the notion that AC abilities
are related to WMC and fluid intelligence. Collectively, a number
of recent studies have been unable to find evidence for a coherent
AC latent variable and this has led some to question whether it is
feasible to consider AC as a psychometric construct (Schubert &
Rey-Mermet, 2019).

The Present Study

Given the recent debate on the nature of individual differ-
ences in AC, in the current study we sought to examine this
issue by conducting a number of mega-analyses. Whereas in a
traditional meta-analysis effects from prior studies are synthe-
sized, in mega-analysis (also known as integrative data analy-
sis; Curran & Hussong, 2009; or meta-analysis with individual
data; Blettner et al., 1999) individual raw data are pooled across
multiple studies and analyzed (see e.g., Bialystok et al., 2010;
Costafreda, 2009; Curran et al., 2018; Hussong et al., 2008;
Robison & Unsworth, 2016; Scoboria et al., 2017). As such,
mega-analyses can drastically increase overall power and can
result in more precise estimates of effects. To conduct the
mega-analysis, we combined data collected in our laboratory
(from both the University of Georgia and the University of
Oregon) over the last 12 years from several prior studies where
participants completed a number of AC and WMC tasks. These
studies include Unsworth, Spillers, and Brewer (2009); Un-
sworth, Miller, et al., (2009); Unsworth and Spillers (2010);
Brewer and Unsworth (2012); Unsworth, Brewer, and Spillers
(2012); Unsworth and McMillan (2014); Unsworth and Mc-
Millan (2017); Robison and Unsworth (2017a; Experiment 1),
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Robison and Unsworth (2018), Robison et al. (in press); Un-
sworth, Robison, and Miller (2019), as well as data that have
not yet been published. These data reflect all the relevant data
available from these labs and were not selected for their prior
demonstrations of AC latent factors. Excluded data came from
studies where the timing of the AC tasks was changed to
accommodate pupillometry (e.g., Unsworth & Robison, 2017a;
Unsworth et al., 2020) or where experimental manipulations
were done on the tasks (e.g., Unsworth & Robison, 2020). We
also excluded data where some of the data were collected in our
laboratory and some of the data were collected in other labo-
ratories (e.g., Redick et al., 2016).

In each study, participants performed various AC tasks in-
cluding antisaccade, color-word Stroop, arrow flankers, psy-
chomotor vigilance, and the sustained attention to response task
(SART) along with measures of WMC (operation span, sym-
metry span, and reading span). We have specifically used these
tasks in prior research because they are thought to measure
restrain, constrain, and sustain components of a broader AC
ability (e.g., Unsworth, Spillers, et al., 2009; Unsworth &
Spillers, 2010; Unsworth et al., 2012). That is, measures from
antisaccade, Stroop, and no-go accuracy in the SART are
thought to partially index the ability to restrain attention and
override a prepotent response. Measures from flankers are
thought to partially index the ability to constrain attention to
target information in the presence of distractors. Whereas mea-
sures from the psychomotor vigilance and RT variability in the
SART are thought to partially index the ability to sustain
attention and prevent lapses of attention. Furthermore, in prior
research we have been careful to use a mix of dependent
measures including accuracy, RT difference scores, as well as
variability in RT in order to ensure that the results are not
simply due to using the same dependent measures (e.g., all RTs)
as well as avoiding using only RT difference scores which can
have poor reliability and other psychometric properties. Be-
cause each study utilized nearly identical versions of tasks and
similar samples, we reasoned that pooling data across the stud-
ies into a combined dataset would provide a powerful test of AC
as a psychometric construct.

With the combined dataset we addressed a number of specific
questions. First, we asked are AC tasks reliable. Mixed evi-
dence for AC abilities could be partially due to the fact that AC
measures can be unreliable and are multidimensional with mul-
tiple processes contributing to performance (task impurity).
Although some studies have demonstrated that some AC tasks
have good reliability (such as antisaccade), other tasks that
typically rely on difference scores (such as flankers and Stroop)
typically have poorer reliability estimates (e.g., Friedman &
Miyake, 2004; Hedge et al., 2018; Kane et al., 2016; Paap &
Sawi, 2016; Redick et al., 2016; Rey-Mermet et al., 2018;
Unsworth & McMillan, 2014). Thus, one reason that many AC
tasks demonstrate weak correlations with each other is because
some of the measures are simply not very reliable. Low reli-
ability of AC and other executive control tasks has long been
recognized as a major problem (Burgess, 1997; Rabbitt, 1997),
and recent investigations similarly suggest unreliability as a key
issue for several AC tasks. Indeed, issues with reliability and
high measurement error have led some researchers to conclude
that individual differences studies using AC tasks are bound to

fail (Rouder, Kumar, & Haaf, 2019). Thus, we first examined
the extent to which various AC tasks are reliable in the large
combined dataset.

Second, we asked whether different AC tasks are related to
one another. That is, are various AC tasks related to one another
at the task level and related sufficiently to form a coherent AC
factor? As noted previously, some prior research has found that
various AC tasks are weakly to moderately related at the task
level and there is sufficient systematic variance across tasks to
form an AC latent factor. Other research, however, has sug-
gested that many AC tasks demonstrate almost no relation at the
task level, resulting in an inability to form a latent AC factor.
Thus, a key question is the extent to which various AC tasks are
related to one another and whether they are suitably related to
form a latent factor.

Finally, we asked whether AC is related to WMC. That is, if
there is a coherent AC latent factor, is this factor related to
individual differences in WMC? Furthermore, is WMC related to
individual differences on each AC task separately? As reviewed
above, a number of studies have suggested that WMC (based on
either a single WMC task or a composite of several tasks) is related
to performance on each of the AC tasks used. Furthermore, a
number of studies have found that AC and WMC tend to correlate
at the latent level. Given the prominence of AC in various theories
of WMC, it is expected these two constructs should be related at
both the task and latent levels. However, recent research has cast
doubt on these findings as Rey-Mermet et al. (2019) found that
WMC was not related to any of the AC measures in their study. As
such, Rey-Mermet et al. concluded that AC abilities were unlikely
to be related to WMC.

By pooling data across a number of prior studies that have
utilized similar tasks, the current study is in a unique position
to answer important questions on the nature of individual dif-
ferences in AC. These issues are critically important given the
prominence of AC as an explanatory construct in a number of
domains. Specifically, AC is thought to be a critical theoretical
construct in terms of models that explain individual variation in
WMC and the ability of WMC to predict higher-level constructs
like fluid intelligence (Engle & Kane, 2004; Unsworth & Engle,
2007). AC is also theorized to be important in explaining age
differences (Hasher & Zacks, 1988), neuropsychological differ-
ences (van Zomeren & Brouwer, 1994) and is thought to be a
key component of intelligence (Duncan et al., 1996; Kane &
Engle, 2002; Schneider & McGrew, 2012; Unsworth et al.,
2014). But, if there is no evidence for AC as a psychometric
construct, then this provides a serious challenge to all models
that rely on AC as an explanatory construct. As such there is an
important need to examine the validity of AC as a psychometric
construct.

Method

Participants

Data were pooled across multiple studies conducted in our
laboratory at the University of Georgia (age M = 19.19, SD =
1.65; 65.1% Female) and the University of Oregon (age M =
19.48, SD = 1.90; 61.8% Female) over the last 12 years. The



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

INDIVIDUAL DIFFERENCES IN ATTENTION CONTROL 5

studies were approved by the Institutional Review Boards at the
University of Georgia and the University of Oregon. The over-
all number of participants was N = 3082. For each task there
were different numbers of participants with available data (see
Table 1). In the combined dataset we examined accuracy and
RTs for the different measures. Data from participants who had
mean RTs < 150 ms and mean RTs > 5,000 ms were post hoc
excluded after examining the pooled data. This resulted in data
for six participants on the Stroop and four participants on
flanker being excluded because of long RTs. We also excluded
participants who had accuracy lower than 50% on congruent
and/or neutral trials on the Stroop and flanker. This resulted in
data for 11 participants being excluded on Stroop data for 22
participants being excluded on flanker.'

Procedure

After signing informed consent, participants completed various
combinations of operation span, symmetry span, reading span,
antisaccade, flankers, Stroop, psychomotor vigilance task, and
SART. In several studies, additional tasks (such as fluid intelli-
gence and long-term memory) were also given, but are not in-
cluded in the mega-analysis.

Attention Control (AC) Tasks

Antisaccade

In this task (Kane et al., 2001) participants were instructed to
stare at a fixation point which was onscreen for a variable
amount of time (200-2,200 ms). A flashing white “=" was then
flashed 12.7 cm either to the left or right of fixation for 100 ms.
The target stimulus (a B, P, or R) then appeared onscreen for
100 ms, followed by masking stimuli (an H for 50 ms followed
by an 8, which remained onscreen until a response was given).
The participants’ task was to identify the target letter by press-
ing a key for B, P, or R (the keys 4, 5, 6 on the numberpad) as
quickly and accurately as possible. In the prosaccade condition
the flashing cue (=) and the target appeared in the same
location. In the antisaccade condition the target appeared in the
opposite location as the flashing cue. Participants first com-
pleted practice trials to learn the response mapping then com-
pleted prosaccade practice trials, and finally completed antisac-
cade trials. The number of antisaccade trials was slightly
different across studies, with some studies having 40 trials,
some studies having 50 trials, and other studies having 60 trials.
The dependent variable was proportion correct on the antisac-
cade trials.

Arrow Flankers

This is a variant of the executive control measure in the
Attention Network Test (Fan et al., 2002). This version was
initially used by Redick and Engle (2006). Participants were
presented with a fixation point for 400 ms. This was followed
by an arrow directly above the fixation point for 1,700 ms. The
participants’ task was to indicate the direction the arrow was
pointing (pressing the F for left pointing arrows and pressing J

for right pointing arrows) as quickly and accurately as possible.
On neutral trials the arrow was flanked by two horizontal lines
on each side. On congruent trials the arrow was flanked by two
arrows pointing in the same direction as the target arrow on
each side. Finally, on incongruent trials the target arrow was
flanked by two arrows pointing in the opposite direction as the
target arrow on each side. All trial types were randomly inter-
mixed. Participants first performed several practice trials and
then the real trials. The number of real trials was slightly
different across studies with some studies having 90 trials and
other studies having 150 trials. The number of congruent,
incongruent, and neutral trials was always equal within a study.
The main dependent variables were the RT difference between
accurate incongruent and neutral trials as well as proportion
correct on incongruent trials. We also computed a composite
flanker variable that combined the RT difference score and
incongruent accuracy into a single measure. Specifically, we
z-scored both the RT difference score and incongruent error
rates. We then averaged the z-scores together. This is a variant
of the balanced integration score (Liesefeld et al., 2015;
Liesefeld & Janczyk, 2019) and provides a simple means of
combining these two putative measures of conflict into a single
measure. There are likely other ways of combining measures
into a single composite (see Draheim et al., 2019; Liesefeld &
Janczyk, 2019 for discussions).

Stroop

Participants were presented with a color word (red, green, or
blue) presented in one of three different font colors (red, green,
or blue; Stroop, 1935). The participants’ task was to indicate the
font color via key press (red = 1, green = 2, blue = 3).
Participants were told to press the corresponding key as quickly
and accurately as possible. Participants first completed a re-
sponse mapping practice and then practiced the real task. On the
real trials, 67% were congruent such that the word and the font
color matched (i.e., red printed in red) and the other 33% were
incongruent (i.e., red printed in green). The number of trials
was slightly different across studies with some studies having
75 trials, some studies having 100 trials, some studies having
120 trials, and other studies having 135 trials. The dependent
variables were the difference in mean RT for accurate incon-
gruent and congruent trials as well as proportion correct on the
incongruent trials. We also computed a composite Stroop vari-
able that combined the RT difference score and incongruent
accuracy into a single measure. Specifically, we z-scored both
the RT difference score and incongruent error rates. We then
averaged the z scores together. This is a variant of the balanced
integration score (Liesefeld et al., 2015; Liesefeld & Janczyk,
2019) and provides a simple means of combining these two
putative measures of conflict into a single measure. There are

! Note participants with low accuracy on flanker incongruent trials but
high accuracy on congruent and neutral trials were left in the analysis.
Excluding these participants led to similar results.
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Table 1
Descriptive Statistics for All Measures
Measure M SD Range Skew Kurtosis Reliability N

Ospan a7 17 96 —1.13 1.53 74 3057
Symspan .70 18 1.00 —.65 15 .67 2691
Rspan 74 18 1.00 —.89 .69 .79 2910
Anti .53 15 .80 27 —.65 .82 3012
Stroop 148.48 97.23 1101.75 .96 2.95 52 1768
StroopIAcc .93 .07 .80 —=2.77 16.66 .60 1768
Flanker 113.84 68.22 657.39 1.12 2.95 .61 1525
FlankerIAcc 92 .16 1.00 -3.99 16.99 91 1541
PVT 539.64 250.22 3367.34 5.77 48.84 93 2520
SARTSsd 160.96 55.44 446.21 1.65 4.69 .85 812
SARTAcc 43 21 94 .14 =79 .83 812
StroopComp .00 78 10.16 2.05 12.34 .60 1768
FlankerComp —-.03 1 6.53 2.32 8.54 a7 1525

Note. Ospan = operation span; Symspan = symmetry span; Rspan = reading span; Anti = antisaccade;
Stroop = RT Stroop effect; StrooplAcc = accuracy on incongruent trials in Stroop; Flanker = RT flanker
effect; FlankerTAcc = accuracy on incongruent trials in Flanker; PVT = psychomotor vigilance task;
SARTsd = standard deviation of reaction times in sustained attention to response task; SARTacc =
accuracy on sustained attention to response task; StroopComp = composite variable combining reaction
time (RT) Stroop effect with incongruent accuracy; FlankerComp = composite variable combining RT

Flanker effect with incongruent accuracy.

likely other ways of combining measures into a single compos-
ite (see Draheim et al., 2019; Liesefeld & Janczyk, 2019 for
discussions).

Psychomotor Vigilance Task

In the psychomotor vigilance task (PVT) participants were
presented with a row of zeros on screen. After a variable
amount of time the zeros began to count up in 17-ms intervals
from O ms (as determined by the 60 Hz monitor refresh rate).
The participants’ task was to press the spacebar as quickly as
possible once the numbers started counting up. After pressing
the space bar the response time was left on screen for 1 s to
provide feedback to the participants. Interstimulus intervals
were randomly distributed and ranged from 1 s to 10 s. The
entire task lasted for 10 min for each individual (roughly 75
total trials). The dependent variable was the average RT for the
slowest 20% of trials (Dinges & Powell, 1985; Unsworth et al.,
2010).

Sustained Attention to Response Task

Participants completed a version of a Sustained Attention to
Response Task (SART) with semantic stimuli adapted from
McVay and Kane (2009). The SART is a go/no-go task where
subjects must respond quickly with a key press to all presented
stimuli except infrequent (11%) target trials. In this version of
SART, word stimuli were presented in Courier New font size 18
for 300 ms followed by a 900-ms mask. Most of the stimuli
(nontargets) were members of one category (animals) and in-
frequent targets were members of a different category (foods).
The number of real trials was slightly different across studies
with some studies having 315 trials and other studies having
470 trials. The dependent variables were accuracy for targets
and each individual’s standard deviation of RT for go trials.

WMC Tasks
Operation Span

Participants solved a series of math operations while trying to
remember a set of unrelated letters (F, H, J, K, L, N, P, Q, R,
S, T, Y; see Unsworth et al., 2005). Participants were required
to solve a math operation, and after solving the operation they
were presented with a letter for 1 s. Immediately after the letter
was presented the next operation was presented. At recall
participants were asked to recall letters from the current set in
the correct order by clicking on the appropriate letters. For all
of the span measures, items were scored correct if the item was
recalled correctly from the current list. Participants were given
practice on the operations and letter recall tasks only, as well as
two practice lists of the complex, combined task. List length
varied randomly from three to seven items. The total possible
correct was slightly different across studies with some studies
having a maximum score of 50 and other studies having a
maximum score of 75. The dependent variable was proportion
of items recalled in the correct serial position.

Symmetry Span

Participants recalled sequences of red squares within a matrix
while performing a symmetry-judgment task (see Unsworth,
Redick, et al., 2009). In the symmetry-judgment task, partici-
pants were shown an 8 X 8 matrix with some squares filled in
black. Participants decided whether the design was symmetrical
about its vertical axis. The pattern was symmetrical half of the
time. Immediately after determining whether the pattern was
symmetrical, participants were presented with a 4 X 4 matrix
with one of the cells filled in red for 650 ms. At recall,
participants recalled the sequence of red-square locations by
clicking on the cells of an empty matrix. Participants were
given practice on the symmetry-judgment and square recall task
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as well as two practice lists of the combined task. List length
varied randomly from two to five items. The total possible
correct was slightly different across studies with some studies
having a maximum score of 28 and other studies having a
maximum score of 42. The dependent variable was proportion
of items recalled in the correct serial position.

Reading Span

While trying to remember an unrelated set of letters (F, H, J,
K,L,N,P,Q, R, S, T, Y), participants were required to read a
sentence and indicated whether or not it made sense (see
Unsworth, Redick, et al., 2009). Half of the sentences made
sense, whereas the other half did not. Nonsense sentences were
created by changing one word in an otherwise normal sentence.
After participants gave their response, they were presented with
a letter for 1 s. At recall, participants were asked to recall letters
from the current set in the correct order by clicking on the
appropriate letters. Participants were given practice on the
sentence judgment task and the letter recall task, as well as two
practice lists of the combined task. List length varied randomly
from three to seven items. The total possible correct was
slightly different across studies with some studies having a
maximum score of 50 and other studies having a maximum
score of 75. The dependent variable was proportion of items
recalled in the correct serial position.

Results

Descriptive Statistics and Bivariate Correlations

Descriptive statistics for all of the measures are shown in
Table 1. As can be seen, the measures had generally acceptable
values of reliability (except for the Stroop RT difference
score).” All reliability estimates are split-half reliabilities. Ad-
ditionally, most of the measures were approximately normally
distributed (except for the psychomotor vigilance task and the
composite variables which were positively skewed, and the
incongruent accuracy variables which tended to be negatively
skewed).? Shown in Figure 1 are frequency histograms for both
Stroop and flanker RT difference score effects. As can be seen,
there seemed to be quite a bit of variability in both effects,
which is inconsistent with some recent claims suggesting that
there is insufficient between participant variability to find cor-
relational effects (e.g., Hedge et al., 2018).

Correlations, shown in Table 2, were weak to moderate in
magnitude (see the online supplemental materials for scatter
plots). The three WMC measures were strongly interrelated and
demonstrated weaker relations with the AC tasks. Correlations
among the AC tasks were weak to moderate in magnitude (i.e.,
r = .10 small, r = .20 medium, r = .30 large; see Funder &
Ozer, 2019; Gignac & Szodorai, 2016) with an average absolute
correlation of r = .15. Most of the weak relations were between
the two tasks utilizing RT difference scores (Stroop and flanker
with each other and with the other variables). The average
absolute correlation among the AC tasks without the difference
scores was r = .20. Incongruent accuracy on Stroop trials also
demonstrated generally weak correlations. Examining correla-
tions with the composite Stroop and flanker variables that

combine the RT difference scores with incongruent accuracy
suggested an average absolute correlation of » = .19. Generally
similar results were obtained when examining Spearman’s rho
instead of Pearson correlations. Note that given the SART was
used only in a few studies, there are fewer participants for some
of the relations with SART. In particular, there were only 227
participants for the correlation between the SART variables and
the flanker variables and only 577 participants between the
SART variables and the Stroop variables. All other relations are
based on Ns > 700. Overall, these results suggest that different
AC tasks tend to demonstrate weak to moderate correlations
with one another.

Relations Between Each Attention Control Measure
With Working Memory Capacity

As shown in Table 2 there were weak relations between each
AC measure and each WMC measure. Here we examined
whether a composite WMC variable would correlate with each
AC measure. In many prior studies that have examined the
relation between WMC and performance on a single AC task, a
composite (typically a z-score or factor composite) has been
formed from the various WMC tasks and relations between this
composite WMC measure and performance on the AC task are
examined. Thus, we wanted to examine whether a composite
WMC measure would correlate with each AC measure sepa-
rately as suggested by prior research. Additionally, as noted
previously, Rey-Mermet et al. (2019) found that none of their
AC measures were related to WMC, thus we wanted to further
examine whether similar results would be obtained in the com-
bined data set. To examine this, we created a z score composite
for WMC by first z-scoring each WMC measure and the aver-
aging the resulting z scores. Note, if a participant was missing
a WMC measure, the z score was computed based on the WMC
measures that were available. Overall similar results were found
when using a factor composite for WMC. Shown in Table 3 are
the resulting correlations and the N for each bivariate correla-
tion. As can be seen, WMC was weakly to moderately related
with each AC measure. All ps < .001, except for the correlation

2 We also examined test-retest reliability of Stroop in a separate sample
of participants. Specifically, 78 participants were tested on the same
version of Stroop (67-33 proportion congruency) used in the current study
along with a version in which proportion congruency was 50-50. Partic-
ipants completed the Stroop along with other tasks (such as operation span)
and then came back four days later and completed the tasks again (67
participants came back for the second session). For the 67-33 proportion
congruency task test—retest reliability for the Stroop effect was r = .56, r =
.85 for accuracy on incongruent trials, and r = .63 for the composite
variable including the Stroop effect and incongruent accuracy together. For
the 50-50 proportion congruency task test—retest reliability for the Stroop
effect was r = .62, r = .76 for accuracy on incongruent trials, and » = .66
for the composite variable including the Stroop effect and incongruent
accuracy together. Additionally, the Stroop effect in the 67-33 task and the
50-50 tasks were correlated in each session (Session 1 r = .52, Session 2
r = .42). Operation span demonstrated good test-retest reliability (r = .76),
consistent with prior research (Unsworth et al., 2005).

3 Transforming the accuracy variables (with an acrsine transformation)
and the psychomotor vigilance task (with a log transformation) resulted in
more normally distributed variables but the overall correlations remained
the same (see the Appendix for a model based on these transformed
variables).
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Frequency Distributions for Stroop and Flanker Effects (a) Stroop Effect (b) Flanker Effect
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between WMC and Stroop incongruent accuracy (p = .001).
Additionally, all Bayes factors > 2,000, except for the corre-
lation between WMC and Stroop incongruent accuracy (BF =
4.76). In particular, the largest numerical relation was with
antisaccade, but overall weak to moderate relations were also
seen for the Stroop effect, PVT, SART sd, SART accuracy, as
well as the Stroop and flanker composite variables. Weaker
relations were seen between WMC and incongruent accuracy on
both the Stroop and flanker tasks. The average absolute corre-
lation between WMC and each AC task was r = .16. Overall,
these results are consistent with much prior research suggesting
relations between WMC and performance on each AC task.

Confirmatory Factor Analyses

Next, we used latent variable techniques to test our main
questions of interest. For all model testing we used R (R Core
Team, 2017) with the lavaan package (Rosseel, 2012). Overall
similar results were obtained when using Lisrel to fit the
models. Due to large amounts of missing data for many of the
pairwise relations, we used full information maximum likeli-

Stroop

Flanker

hood estimation to utilize all available data points (Enders,
2010). Overall similar results were obtained when examining
all available pairwise information (pairwise deletion) and when
utilizing multiple imputation. For each model we report several
fit statistics. Nonsignificant chi-square tests indicate adequate
model fit; with large samples like ours, however, they are nearly
always significant. Comparative fit indices (CFI) and Tucker-
Lewis indices (TLI) of = .95 indicate adequate fit, whereas the
Root Mean Square Error of Approximation (RMSEA) and Stan-
dardized Root Mean Square Residual (SRMR) values of =.06
indicate good fit (e.g., Schermelleh-Engel et al., 2003).

Relations Between Attention Control and Working
Memory Capacity

For our first model we examined whether the various AC
tasks would load onto a general AC factor and whether this
factor would be related to a WMC factor. Therefore, we spec-
ified a model in which eight of the AC measures (antisaccade,
Stroop, Stroop incongruent accuracy, flanker, flanker incongru-
ent accuracy, PVT, SART sd, and SART accuracy) were al-
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Correlations Among the Measures

13

12

10

Measure

1. Ospan

AL, A7)

0.

2. Symspan
3. Rspan
4. Anti
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0.12 .05, .19] —

—0.18 [—.26, —.10]
—0.13 [~.25, .00]

0.06 [—.07,.19]

0.09 .01, .17]

0.29 .23, 36]

-0.2
—.18, —.04] 0.07 [.02,.12]
=75, =711 0.23[.17,.29]

—32,-20]
—21,.04]
1

—0.26
—0.09

0.2
-0.11
—0.73

—.27, —.20]

.03, .15]
.81, .84]

-0.22
0.09
0.02

—0.02
0.09
0.83

—.13,.02]

08, .22]
—.08,.03]

—.19, —.04]

—0.05
0.15
—0.03
—0.1
0.26
—0.78
—0.11

—25,—.16]
02,.17)
—.09,.05]

.03, .13]
—.01,.14]

.76, .80]

—0.21
0.09
-0.02
0.08
0.05
—0.03
0.78
0.07

—.31, —.24]
—.29, —.20]

—23,—.13]
116, 30]
—20,—.11]

=
!
o

34, 40

0.:

0.
-0.

0.07
-0.11

0.
=0.

—0.
0.13

6. StroopIAcc
12. StroopComp —0.15
13. FlankerComp —0.15

7. Flanker
8. FlankerIAcc

5. Stroop

9. PVT

10. SARTsd
11. SARTAcc

Bold correlations are significant at p < .01; italicized correlations are not significant at p > .05; correlations in standard font are correlated at p < .05. Values in brackets are 95% confidence

intervals. Ospan = operation span; Symspan = symmetry span; Rspan = reading span; Anti = antisaccade; Stroop = Stroop effect; StroopIAcc = accuracy on incongruent trials in Stroop; Flanker

flanker effect; FlankerIAcc = accuracy on incongruent trials in Flanker; PVT = psychomotor vigilance task; SARTsd = standard deviation of reaction times in sustained attention to response task;

Note.

SARTacc = accuracy on sustained attention to response task; StroopComp = composite variable combining RT Stroop effect with incongruent accuracy; FlankerComp = composite variable combining

RT Flanker effect with incongruent accuracy.

Table 3
Correlations Between Attention Control Measures and
Composite Working Memory Capacity Measure

AC measure Correlation with WMC 95% CI N

Anti 25 [.21, .28] 3,003
Stroop -.16 [—.20, —.11] 1,767
Strooplacc .08 [.03,.12] 1,767
Flanker —-.14 [—.19, —.09] 1,516
Flankerlacc A2 [.07, .17] 1,532
PVT -.17 [—.21, —.13] 2,511
SARTsd -.19 [—.26, —.13] 811
SARTacc 17 [.10, .24] 811
StroopComp -.15 [—.20, —.10] 1,767
FlankerComp -.18 [—.23, —.13] 1,516
Note. Bold correlations are significant at p < .01. Values in brackets are

95% confidence intervals. Anti = antisaccade; Stroop = Stroop effect;
StroopIAcc = accuracy on incongruent trials in Stroop; Flanker = flanker
effect; FlankerlAcc = accuracy on incongruent trials in Flanker; PVT =
psychomotor vigilance task; SARTsd = standard deviation of reaction
times in sustained attention to response task; SARTacc = accuracy on
sustained attention to response task; StroopComp = composite variable
combining RT Stroop effect with incongruent accuracy; FlankerComp =
composite variable combining RT Flanker effect with incongruent accu-
racy.

lowed to load onto the AC factor. The three WMC measures
were allowed to load onto the WMC factor, and the factors were
allowed to correlate. We a priori specified residual variances for
operation span and reading span to correlate given that these
tasks use the same set of stimulus materials and are nearly
identical, differing only in the processing task. Additionally,
residual variances for variables from the same task for Stroop,
flanker, and SART were allowed to correlate. The overall fit of
the model was good, X2(39) = 125.77, p <.001, RMSEA = .03
[.02, .03], CFI = .97, TLI = .96, SRMR = .04. Shown in
Figure 2 is the model. As can be seen, all of the AC measures
loaded significantly on the AC factor. Most of the loadings
were moderate (antisaccade, PVT, SART sd, SART accuracy),
but the loadings for Stroop were much weaker. Standard errors
of the factor loadings were all .03 except for the SART vari-
ables where the standard errors were .04. The overall AC factor
was correlated with WMC at .53 (SE = .03), consistent with
prior research. We also estimated the factor reliability with the
Omega coefficient (w; Raykov, 2001b). Factor reliability was
moderate for both factors (WMC w = .61, AC o = .54). Note
that with correlated errors, estimates of w tend to be lower
(Raykov, 2001la; Savalei & Reise, 2019). Indeed, with the
correlated errors taken out of the model, estimates of w in-
creased (WMC o = .72, AC w = .61). We compared this model
to a one factor model in which all of the AC and WMC
measures were allowed to load onto a single factor. The overall
fit of the model was adequate, X2(4O) = 349.70, p < .001,
RMSEA = .05 [.045, .055], CFI = .89, TLI = .85, SRMR =
.06. Importantly, the one factor model fit significantly worse
than the two-factor model, sz(l) = 223.93, p < .001. Thus,
the two-factor model demonstrated that the AC tasks are suffi-
ciently related to one another to load on the same factor
(although the Stroop variables loaded weakly), and this factor
was moderately related to WMC. As such, these results are
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Figure 2

Confirmatory Factor Analysis Model for Working Memory
Capacity (WMC) and Attention Control (AC) for the Full
Combined Dataset

0.53

Strooplac

Flanker

Flankerlac

047

SARTsd
SARTacc

Note. Paths connecting latent variables (circles) to each other repre-
sent the correlations between the constructs and the numbers from the
latent variables to the manifest variables (squares) represent the
loadings of each task onto the latent variable. Solid paths are signif-
icant at the p < .05 level. Ospan = operation span; Symspan =
symmetry span; Rspan = reading span; Anti = antisaccade; Stroop =
Stroop effect; Strooplac = accuracy on incongruent trials in Stroop;
Flanker = flanker effect; Flankerlac = accuracy on incongruent trials
in Flanker; PVT = psychomotor vigilance task; SARTsd = standard
deviation of reaction times (RTs) in sustained attention to response
task; SARTacc = accuracy on sustained attention to response task.

-0.15

inconsistent with recent claims suggesting that a coherent AC
factor cannot be found and that AC tasks are not related to
wMmC.*

Next, we tested a number of additional models with the full
dataset to examine whether the factor loadings and relation with
WMC were driven by specific measures. Specifically, in our next
model we examined whether antisaccade was driving the relations
seen in the prior model. Prior research has suggested that because
antisaccade tends to load the highest on the AC factor this suggests
that the factor is really just an antisaccade factor rather than a
general AC factor (Rey-Mermet et al., 2019).” If this is the case,
then taking antisaccade out of the model should result in an
inability to find a coherent AC factor, and any resulting factor
should not be related to WMC. To test this model, we specified the
same model as above but simply did not include the antisaccade as
a measure of AC. The overall fit of the model was good, x*(30) =
119.99, p < .001, RMSEA = .03 [.025, .037], CFI = .96, TLI =

.94, SRMR = .04. Shown in Table 4 are the resulting factor
loadings as well as the correlation between the factors. As can be
seen, all of the measures loaded significantly on the AC factor
(w = .44) and the loadings for each measure were very similar to
the loadings in the model that included antisaccade (seen in Figure
2). Furthermore, the correlation between AC and WMC was sim-
ilar to the prior model (.51). Thus, these results suggest that
although antisaccade had the highest numerical loading on the AC
factor in the prior model, the factor was not just an antisaccade
factor. Taking antisaccade out of the model resulted in nearly
identical results as when it was included in the model.

In the next model we examined whether the SART task was
unduly influencing the relations. In particular, as shown in Table 1,
because the SART was only included in a few prior studies, there
were far less data available for this task (indeed only one study
included both SART and flanker) which could have resulted in less
robust estimates. To examine whether the SART variables were
influencing the factor structure we specified the same model as
shown in Figure 2, but now excluded both SART variables. All
other measures and relations remained the same. The overall fit of
the model was good, x*(23) = 71.38, p < .001, RMSEA = .03
[.019, .033], CFI = .98, TLI = .97, SRMR = .03. Shown in Table
4 are the resulting factor loadings as well as the correlation
between the factors. As can be seen, all of the measures loaded
significantly on the AC factor (w = .44) and the loadings for each
measure were very similar to the loadings in the full model that
included SART (seen in Figure 2) as was the correlation with
WMC. Thus, these results suggest that even though there was quite
a bit of missing data for the SART variables, this did not seem to
influence the overall factor much.

* As far as we know, there is no standard way of defining what a
coherent factor is. In the current article, we focused on the overall factor
loadings as well as the robustness of the factor when various tasks were
excluded or different measures were used. In a recent paper, Rey-Mermet
et al. (2020) suggested that a good model should include: “1) the Kaiser-
Meyer-Olkin (KMO) index—a measure of whether the correlation matrix is
factorable—should be larger than .60; (2) most of the error variances needed
to be lower than .90; (3) most of the factor loadings had to be significant
and larger than .30; (4) no factor should be dominated by a large loading
from one task; (5) the amount of shared variance across tasks—that is,
‘factor reliability’ as assessed by coefficient w—had to be high (i.e.,
about.70).” In our models, KMO was .71, most of the error variances were
below .90 (except for some of the Stroop and flanker variables) because the
factor loadings were less than .30 (note that Criteria 2 and 3 are redundant),
the factor was not dominated by a single task, and overall factor reliability
measured by o was moderate across many models. Overall, based on these
criteria it does seem like our AC factor is coherent factor.

5 Rey-Mermet et al. (2019) suggested that in two of our prior studies
(Unsworth & Spillers, 2010; Unsworth & McMillan, 2014) antisaccade had
a very high loading, whereas the other tasks had very low loadings,
suggesting that the AC factor in these studies was really just an antisaccade
factor. However, this is not correct. In both studies although antisaccade
had the highest numerical loading, the loading was within a standard error
of several of the other AC tasks. Furthermore, we reanalyzed data from
each of these studies excluding antisaccade from the AC factor. Excluding
antisaccade resulted in nearly identical results in which all of the AC tasks
loaded on the AC factor, and the AC factor was correlated with other
factors including WMC, fluid intelligence, and long-term memory. Thus,
although antisaccade had the highest factor loading, the AC factor was not
driven by a single task which is inconsistent with Rey-Mermet et al.’s
(2019) claims.
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Table 4
Standardized Factor Loadings, Standard Errors, and Correlations Between Constructs for Confirmatory Factor Analyses
Construct/measure No anti No SART No IAcc No RT dif All acc One meas
WMC
Ospan .63 (.03) .63 (.03) .62 (.03) .63 (.03) .64 (.03) .62 (.03)
Symspan .69 (.04) .68 (.03) .69 (.03) .69 (.03) .67 (.03) .69 (.03)
Rspan .55 (.03) .56 (.03) .55 (.03) .56 (.03) .56 (.03) .55 (.03)
AC
Anti .60 (.03) .59 (.03) .58 (.03) .57 (.04) .60 (.03)
Stroop —.20 (.04) —.23(.03) —.22 (.03) —.23 (.03)
StrooplAcc .18 (.04) 17 (.03) .19 (.03) 24 (.04)
Flanker —.24 (.04) —.29 (.03) —.28 (.03) —.28 (.03)
FlankerIAcc 34.(.04) 35(.03) 35(.03) 34.(.04)
PVT —.48 (.04) —.45(.03) —.46 (.03) —.49 (.03) —.44 (.03)
SARTsd — .48 (.05) — .49 (.04) — 47 (.04)
SARTAcc 42 (.05) .39 (.04) 42 (.04) 44 (.05) .39 (.04)
WMC-AC r 51.(.04) .53 (.03) .55 (.03) .51 (.03) .53 (.04) .55 (.03)

Note.

Standard errors are in parentheses. Ospan = operation span; Symspan = symmetry span; Rspan = reading span; Anti = antisaccade; Stroop = RT

Stroop effect; StroopIAcc = accuracy on incongruent trials in Stroop; Flanker = RT flanker effect; FlankerIAcc = accuracy on incongruent trials in
Flanker; PVT = psychomotor vigilance task; SARTsd = standard deviation of reaction times in sustained attention to response task; SARTacc = accuracy

on sustained attention to response task.

A similar model was specified to see whether including incon-
gruent accuracy on the Stroop and flanker tasks influenced the
factor structure. That is, typically only the RT difference score is
used as the measure of Stroop and flanker, and thus including
incongruent accuracy for these tasks may have influenced the
overall factor. To see whether this was the case, we specified the
same model as before but now excluded incongruent accuracy for
both Stroop and flanker tasks. The overall fit of the model was
good, x*(24) = 53.38, p = .001, RMSEA = .02 [.01, .03], CFI =
.99, TLI = .98, SRMR = .03. Shown in Table 4 are the resulting
factor loadings as well as the correlation between the factors. As
can be seen, all of the measures loaded significantly on the AC
factor (w = .55) and the loadings for each measure were very
similar to the loadings in the full model that included incongruent
accuracy (seen in Figure 2). The correlation with WMC also
remained very similar.

We specified a similar model, but now excluding the RT
difference score variables for Stroop and flanker. As noted
previously, RT difference scores can have poor reliability
which influences their potential correlations with other mea-
sures. Indeed, as shown in Table 1, the RT difference scores for
Stroop and flanker tended to have the lowest reliability esti-
mates. Thus, we tested a model in which the AC factor was
composed of the various AC measures, but did not include the
RT difference score measures for Stroop and flanker. The
overall fit of the model was good, x*(24) = 85.65, p < .001,
RMSEA = .03 [.022, .036], CFI = .98, TLI = .96, SRMR =
.04. Shown in Table 4 are the resulting factor loadings as well
as the correlation between the factors. As can be seen, all of the
measures loaded significantly on the AC factor (w = .55), and
the loadings for each measure were very similar to the loadings
in the full model that included the RT difference scores (seen in
Figure 2) as was the correlation with WMC.

In our next model we examined whether we could extract an
AC factor from only the accuracy measures and whether this
factor would correlate with WMC. In particular, Rey-Mermet et
al. (2019) suggested that one issue with prior studies is that

there was a mismatch of method variance between AC and
WMC in that many AC measures relied on RT whereas the
WMC measures relied on accuracy. Thus, we wanted to exam-
ine whether we could find an accuracy only AC factor and
whether this factor would be related to WMC. Therefore, we
specified a model in which accuracy from antisaccade, Stroop,
flankers, and the SART all loaded onto the AC factor. The
overall fit of the model was good, x*(12) = 39.81, p < .001,
RMSEA = .03[.02, .04], CFI = .99, TLI = .98, SRMR = .03.
Shown in Table 4 are the resulting factor loadings as well as the
correlation between the factors. As can be seen, all of the
measures loaded significantly on the AC factor (w = .43), and
the loadings for each measure were very similar to the loadings
in the full model that included the RT measures (seen in Figure
2) as was the correlation with WMC.

Finally, we estimated a model in which only one measure per
task was used to examine whether using multiple measures for
some of the tasks influenced the results. Thus, in this model AC
was composed of antisaccade, the Stroop effect, the flanker
effect, PVT, and accuracy on the SART (similar results were
obtained using standard deviation of RT on the SART). The
overall fit of the model was good, X2(18) = 35.54, p = .008,
RMSEA = .02 [.01, .03], CFI = .99, TLI = .99, SRMR = .02.
Shown in Table 4 are the resulting factor loadings as well as the
correlation between the factors. As can be seen, all of the
measures loaded significantly on the AC factor (w = .49), and
the correlation between AC and WMC was similar to the other
models.

Collectively, the results suggest that when examining the full
dataset that the AC measures are sufficiently related to form a
coherent AC factor, and this factor is correlated with WMC.
Furthermore, examining various models in which different mea-
sures were excluded resulted in nearly identical results as the full
model, suggesting that the AC factor was not dependent on the
various measures. As such, these results suggest that there are
individual differences in broad AC abilities that are related to
WMC.
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Models With List-Wise Deletion

Although the results from the full dataset are important, given
the large amount of missing data associated with some of the
relations, it is reasonable to wonder whether the results are simply
a product of using full information maximum likelihood. To ex-
amine this, we ran a number of models using list-wise deletion to
see if generally similar results are obtained when using list-wise
deletion compared to when using all available data. Note, for these
models list-wise deletion was done only on the AC tasks such that
if a participant was missing data on a WMC measure, but had full
information on all AC tasks, they were still included in the anal-
ysis. Overall similar results are found when doing strict list-wise
deletion on all measures. In our first model we examined relations
among antisaccade, flanker, and PVT given that these three tasks
are thought to provide measures of restraining attention, constrain-
ing attention, and sustaining attention (e.g., Kane et al., 2016;
Poole & Kane, 2009; Unsworth, Spillers, et al., 2009; Unsworth &
Spillers, 2010). In the model we specified antisaccade, flankers
(RT difference score and incongruent accuracy), and PVT to load
on the AC factor, while the three working memory measures
loaded on the WMC factor. The residual variance between oper-
ation span and reading span was allowed to correlate as before.
With list-wise deletion there were 1,018 participants available for
this model. The overall fit of the model was good, x*(11) = 26.98,
p = .005, RMSEA = .04 [.02, .06], CFI = .98, TLI = .97,
SRMR = .03. Shown in Table 5 is the resulting model (labeled
AFP). As can be seen, all of the measures loaded significantly on
the AC factor (v = .48), and the AC and WMC factors were
correlated (.54). Thus, only examining a subset of tasks and
participants for which full data were available suggested that tasks
thought to represent different aspects of AC are correlated, load
onto the same factor, and this factor is related to WMC.

Similar results were obtained when we examined relations
among antisaccade, Stroop, and flanker and their relations with

Table 5

Standardized Factor Loadings, Standard Errors, and
Correlations Between Constructs for Confirmatory Factor
Analyses With List-Wise Deletion

Construct/measure AFP ASF ASP
WMC
Ospan .69 (.05) .82 (.07) .64 (.04)
Symspan .65 (.05) .58 (.06) 71(.04)
Rspan .64 (.05) 79 (.08) 49 (.04)
AC
Antisaccade .50 (.04) .56 (.06) .59 (.04)
Stroop —.18 (.05) —.24 (.04)
StrooplAcc .15 (.03) 17 (.04)
Flanker —.26 (.04) —.35(.06)
Flankerlacc 45 (.04) .39 (.06)
PVT —.54 (.04) —.42 (.04)
WMC-AC r .54 (.05) .46 (.07) .56 (.05)
Note. Standard errors are in parentheses. Ospan = operation span; Syms-

pan = symmetry span; Rspan = reading span; Anti = antisaccade;
Stroop = RT Stroop effect; StrooplAcc = accuracy on incongruent trials
in Stroop; Flanker = RT flanker effect; FlankerlAcc = accuracy on
incongruent trials in Flanker; PVT = psychomotor vigilance task; AFP =
antisaccade, flanker, and psychomotor vigilance task model; ASF = anti-
saccade, Stroop, and flanker model; ASP = antisaccade, Stroop, and
psychomotor vigilance task model.

WMC. Several of the prior studies which could not find evidence
for a general AC factor primarily relied on “inhibition” tasks. With
list-wise deletion on the AC measures there were 714 participants
available for this model. The overall fit of the model was good,
x>(16) = 33.13, p = .007, RMSEA = .04 [.02, .06], CFI = .98,
TLI = .96, SRMR = .03. Shown in Table 5 is the resulting model
(labeled ASF). As can be seen, all of the measures loaded signif-
icantly on the AC factor (w = .36), and the AC and WMC factors
were correlated (.46). Similar results were obtained when we
examined relations among antisaccade, Stroop, and PVT. With
list-wise deletion on the AC measures there were 1,420 partici-
pants available for this model. The overall fit of the model was
good, x*(11) = 25.49, p = .008, RMSEA = .03 [.02, .05], CFI =
.99, TLI = .98, SRMR = .02. Shown in Table 5 is the resulting
model (labeled ASP). As can be seen, all of the measures loaded
significantly on the AC factor (o = .36), and the AC and WMC
factors were correlated (.56). Similar to the prior models, these
results suggest that there is coherent AC factor and this factor is
related to a WMC factor.

Models Using Flanker and Stroop
Composite Variables

For our next set of models, we utilized the composite Stroop and
flanker variables that combined the RT difference scores and
incongruent accuracy into a single variable to see whether these
variables resulted in better overall estimates of AC. In the first
model we specified that the six AC measures (antisaccade, Stroop
composite, flanker composite, PVT, SART sd, and SART accu-
racy) loaded onto the AC factor while the three WMC measures
loaded onto the WMC factor. The factors were allowed to corre-
late. The residuals for operation and reading span were also al-
lowed to correlate, and we estimated missing data with full infor-
mation maximum likelihood. The overall fit of the model was
good, x*(24) = 57.42, p < .001, RMSEA = .02 [.01, .03], CFI =
.99, TLI = .98, SRMR = .03. Shown in Figure 3 is the model. As
can be seen, all of the measures loaded significantly and moder-
ately on the AC factor (the loadings for Stroop was weaker).
Standard errors of the factor loadings were all .03 except for the
SART variables where the standard errors were .04. Factor reli-
ability was moderate for both factors (WMC w = .61, AC o =
.59). Consistent with the prior models, AC and WMC were cor-
related at .54 (SE = .03). Thus, using the composite Stroop and
flanker variables resulted in increased loadings for those tasks on
the overall AC factor, and this factor was correlated with WMC.
Note, if antisaccade is taken out of the model, the resulting model
fit the data well, x*(17) = 51.98, p < .001, RMSEA = .03 [.02,
.04], CFI = 98, TLI = .97, SRMR = .03. The factor loadings
remained largely the same as those seen in Figure 4, and AC and
WMC were correlated (.53), suggesting again that the factor was
not driven solely by antisaccade. Similar results were obtained
when using the Stroop and flanker composite variables and list-
wise deletion (see the Appendix).

Models Including Baseline Reaction Time Measures

Given concerns that many of the AC tasks are influenced by
variation in processing speed and do not necessarily reflect vari-
ation in AC abilities, we next examined models in which differ-
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Figure 3

Confirmatory Factor Analysis for Working Memory
Capacity (WMC) and Attention Control (AC) Based on
Stroop and Flanker Composite Variables

0.54

SARTsd
SARTacc

Note. Paths connecting latent variables (circles) to each other rep-
resent the correlations between the constructs and the numbers from
the latent variables to the manifest variables (squares) represent the
loadings of each task onto the latent variable. Solid paths are
significant at the p < .05 level. Ospan = operation span; Syms-
pan = symmetry span; Rspan = reading span; Anti = antisaccade;
StroopC = composite variable combining reaction time (RT)
Stroop effect with incongruent accuracy; FlankerC = composite
variable combining RT Flanker effect with incongruent accuracy;
PVT = psychomotor vigilance task; SARTsd = standard deviation
of RTs in sustained attention to response task; SARTacc = accu-
racy on sustained attention to response task.

-0.15

ences in baseline RT were incorporated. Specifically, in our first
model we ran the same overall model depicted in Figure 2 but now
included a Baseline RT factor that was composed of mean correct
RTs on congruent trials on the Stroop and Flanker tasks as well as
the fastest 20% of RTs on the PVT. We allowed the same residual
variances as the full model to correlate as well as residual vari-
ances for RT measures from the same task (e.g., Stroop to Stroop
congruent RT; flanker to flanker congruent RT, and slowest 20%
and fastest 20% in the psychomotor vigilance task). This model
should allow for an assessment of relations among WMC, AC, and
Baseline RT. The overall fit of the model was good, x*(67) =
305.04, p < .001, RMSEA = .034 [.03, .04], CFI = .94, TLI =
.93, SRMR = .05. Shown in Figure 4a is the model. Standard
errors of the factor loadings were all .03 except for the SART
variables where the standard errors were .04. Factor reliability was
moderate for all factors (WMC w = .62, AC o = .50, Baseline RT
® = .66). As can be seen, the AC factor was correlated with WMC
at .53 (SE = .03) and with the Baseline RT factor at —.86 (SE =
.03). Furthermore, WMC and the Baseline RT factor were corre-
lated at —.38 (SE = .03). Thus, AC and Baseline RT were
correlated, but AC demonstrated a stronger correlation with WMC
than Baseline RT, suggesting that there was likely important

variance shared by AC and WMC that was not shared with
Baseline RT. Indeed, constraining the correlations to be equal
resulted in a worse model fit, sz(l) = 151.51, p < .001, sug-
gesting that AC was more strongly correlated with WMC than
Baseline RT was. We also compared this model to a one factor
model in which all of the AC and Baseline RT measures were
allowed to load onto a single factor. The overall fit of the model
was good, x*(69) = 340.84, p < .001, RMSEA = .036 [.03, .04],
CFI = .94, TLI = .92, SRMR = .05. Importantly, the one factor
model fit significantly worse than the two-factor model suggesting
distinct AC and Baseline RT factors, Ax*(2) = 35.8, p < .001.
Next, we examined whether the residual variance in AC, after
accounting for Baseline RT, is correlated with WMC by examining
a bifactor model. In this model, we specified a common factor in
which all of the AC and Baseline RT measures loaded onto it. We
also specified a residual AC factor in which all of the AC measures
loaded onto this factor. These factors were not allowed to correlate
with each other but were both allowed to correlate with WMC.
Correlations among the residual variances were the same as before.
The overall fit of the model was good, X2(60) = 207.52, p < .001,
RMSEA = .028 [.02, .03], CFI = .97, TLI = .95, SRMR = .04.
Shown in Figure 4b is the model. Standard errors of the factor
loadings were all less than .08. Factor reliability was moderate for
all factors (WMC o = .61, AC residual o = .41, Baseline RT w =
.60). As can be seen, the common factor was correlated with WMC
at —.40 (SE = .03). Importantly, the residual AC factor was also
correlated with WMC at .30 (SE = .05). Thus, even after account-
ing for shared variance with Baseline RT, most of the AC mea-
sures loaded onto the residual AC factor (Stroop did not load
significantly), and this residual AC factor was correlated with
WMC. Similar results were obtained when using incongruent RTs
on the Stroop and flanker tasks instead of the Stroop and flanker
RT difference scores, and similar results were obtained when using
the Stroop and flanker composite variables. Overall, these results
suggest that although some of the relation between WMC and AC
is shared with Baseline RT measures, WMC and AC remain
correlated even after taking this shared variance into account.

Models Relying Primarily on Reaction Time
Difference Scores

The models above relied on various measures of AC, some of
which were RT differences scores. As noted previously, and seen in
the prior models, these RT difference scores have a number of
psychometric issues which can result in lower correlations and less
robust results (e.g., Draheim et al., 2019; Hedge et al., 2018; Rouder
et al., 2019). Despite these known issues, several studies which have
failed to find evidence for a coherent AC factor have primarily relied
on difference score measures (e.g., De Simoni & von Bastian, 2018;
Girtner & Strobel, 2019; Rey-Mermet et al., 2018, 2019, 2020). In the
next set of analyses, we examined models in which AC was based
primarily on RT difference scores from Stroop and flanker along with
accuracy on the antisaccade, consistent with prior research. Thus,
unlike the prior models we do not include accuracy on Stroop and
flanker. In our first model we relied on list-wise deletion for the AC
measures to see if they would load on the same factor and be related
to a WMC factor. With list-wise deletion on the AC measures there
were 714 participants available for this model. The overall fit of the
model was good, x*(7) = 17.10, p = .017, RMSEA = .05 [.02, .07],
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Figure 4

(a) Confirmatory Factor Analysis Model for Working Memory Capacity (WMC), Attention Control (AC), and Baseline RT for the Full
Combined Dataset (b) Confirmatory Factor Analysis Model for Working Memory Capacity (WMC), Residual Attention Control

(ACRes), and a Common Factor for the Full Combined Dataset

a

Common ACRes

Note. The numbers in the Common column represent the factor loadings for each task onto the Common factor; the numbers in ACRes column represent
the factor loadings for each task onto the residual AC factor. Paths connecting latent variables (circles) to each other represent the correlations between
the constructs, and the numbers from the latent variables to the manifest variables (squares) represent the loadings of each task onto the latent variable.
Solid paths are significant at the p < .05 level, whereas dashed paths and italicized values are not significant. Ospan = operation span; Symspan =
symmetry span; Rspan = reading span; Anti = antisaccade; Stroop = Stroop effect; Strooplac = accuracy on incongruent trials in Stroop; Flanker =
flanker effect; Flankerlac = accuracy on incongruent trials in Flanker; PVT = psychomotor vigilance task; SARTsd = standard deviation of reaction times
(RTs) in sustained attention to response task; SARTacc = accuracy on sustained attention to response task; FlankCRT = RT on congruent trials in Flanker;

StroopCRT = RT on congruent trials in Stroop; PVT fast = fastest 20% of RTs on the psychomotor vigilance task.

CFI = 98, TLI = .97, SRMR = .02. Shown in Table 6 is the
resulting model. As can be seen, all of the measures loaded signifi-
cantly on the AC factor (w = .32), although the loading for Stroop
was weak. Furthermore, the AC and WMC factors were correlated
(.55). Thus, examining only putative measures of inhibition based
primarily on RT difference scores suggested the presence of a coher-
ent AC (or inhibition) factor, and this factor was related to WMC.
Next, to more formally examine the robustness of these results we
performed simulations from the overall distribution. Specifically, we
took 1,000 random samples of N = 180 from the overall distribution
of 714 participants. Sample sizes of 180 were chosen based on prior
research which has used a similar sample size (e.g., Rey-Mermet et
al., 2019). Then, for each down-sampled dataset we specified a
two-factor model in which operation span, symmetry span, and read-
ing span loaded onto a WMC factor, and antisaccade, Stroop differ-
ence score, and flanker difference score loaded onto an AC factor.
These two factors were allowed to correlate. For each model, we
saved the resulting parameter estimates and counted the number of
instances in which the model did not converge upon a solution. Table
6 shows the results. With this sample size, a model can be expected

to converge upon a solution roughly 84% of the time. This may
explain why, in some latent variable analyses, attempts to form an AC
factor can sometimes fail when relying primarily on difference scores.
When the model did converge, the WMC measures tended to load
significantly on the model, and both the antisaccade and flanker
tended to load on the AC factor most of the time. The Stroop
difference score only loaded significantly onto the attention control
factor 60% of the time. The correlation between AC and WMC was
on average .53, and this relation was significant roughly 93% of the
time. We also examined how the results would change with both
smaller (N = 120) and larger (N = 360) sample sizes. As seen in
Table 6, when sample sizes were small (N = 120) the models tended
to converge 76% of the time. The Stroop task loaded significantly on
the AC factor only 47% of the time, and flanker loaded significantly
only 57% of the time. However, when sample sizes were larger (N =
360) the model converged 98% of the time, and all measures loaded
significantly on the AC factor over 90% of the time. Thus, sample size
seems to have an important influence on whether AC models relying
primarily on RT difference scores will converge and whether the
measures will load significantly on the AC factor. We contrasted the
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Table 6
Average Standardized Factor Loadings, Percentage of Times the Parameter Was Significant, Average Correlations Between
Constructs, Percentage of Times the Model Converged, and Average Model Fits for Confirmatory Factor Analyses Simulations

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

Symspan = symmetry span; Rspan = reading span; Anti = antisaccade.

Construct/measure Full 180 Sim 120 Sim 360 Sim Acc Sim Comp Sim
WMC
Ospan .84 .78 (100%) .78 (100%) 78 (100%) .78 (100%) 77 (100%)
Symspan 57 .61 (100%) .60 (100%) .61 (100%) .61 (100%) .61 (100%)
Rspan 81 .74 (100%) 77 (100%) 74 (100%) 75 (100%) 75 (100%)
AC
Anti 49 .50 (92%) .50 (76%) .49 (100%) .57 (96%) .59 (96%)
Stroop —.20 —.26 (60%) —.28 (47%) —.24 (92%) .23 (55%) —.26 (60%)
Flanker —.36 —.36 (84%) —.33(57%) —.37 (100%) A5 (95%) —.45 (96%)
WMC-AC r 52 .55 (93%) .55 (76%) .55 (100%) 41 (88%) .46 (90%)
B % Converge 84% 76% 98% 93% 91%
2 X(7) 10.81 9.36 12.73 9.66 10.61
£ CFI 98 98 98 98 98
= TLI .97 .98 .99 .98 98
g RMSEA 04 04 03 03 03
E SRMR .04 .04 .03 04 .03
é Note. Percentages in parentheses reflect the percentage of times corresponding parameter (i.e., loading) was significant. Ospan = operation span;
[

RT difference score models with models in which we relied only on
accuracy on all three tasks or when we utilized the composite mea-
sures for Stroop and flanker (in both Models N = 180). As seen in
Table 6, these models converged more often than models relying on
primarily on RT difference scores. It should be noted that the inclu-
sion of the WMC factor (where all three complex span tasks are
intercorrelated and tend to correlate with the AC measures) improves
the likelihood of convergence, and the situation may not be as good in
studies that do not include a correlated construct or include a less
correlated construct (e.g., self-reports of self-control abilities).

We also examined power for the different models with Wang and
Rhemtulla’s (in press) pwrSEM app. We specified the factor loadings
and factor correlation based on the loadings and correlations in the
simulated models with 1,000 samples per model. These results sug-
gested that similar to the simulation results, that with smaller sample
sizes there was generally insufficient power to reliably detect loadings
of the AC measures onto the AC construct. As sample size increased
(or accuracy or the composite variables were used) power tended to
increase (although power to detect the Stroop loadings were still
insufficient) to more sufficient levels. The full results are presented in
the Appendix (Table A3). These results suggest that when relying on
a fairly large sample size, it is possible to find a coherent AC factor
based primarily on RT difference scores from Stroop and flanker
along with the antisaccade task. However, this factor is not particu-
larly robust, and relying on much smaller sample sizes of roughly
120-180 participants (typical of many studies, including some of our
own) can result less robust results.

Examining Potential Differences Across Sites

One potential issue with mega-analyses of the sort done here is
that there might be important differences in the samples, and thus
it is not appropriate to simply pool the data together (Curran &
Hussong, 2009). In the current analyses we pooled data collected
at both the University of Georgia and the University of Oregon.
Not only are there geographic differences between these two
universities, but there may also be other differences in the samples

(such as differences in the ability ranges due to differences in
admission criteria). Thus, it is important to examine whether
generally similar models are obtained across sites.® In particular, it
is important to examine measurement invariance across the sites.
Measurement invariance refers to whether the same construct is
being measured across different groups (Putnick & Bornstein,
2016; Vandenberg & Lance, 2000). In the current study this would
be assessing whether AC and WMC are being measured similarly
across the different sites. To examine this, we specified a multi-
group confirmatory factor analysis with site as our grouping vari-
able. First, we examined configural invariance (i.e., the factor
structure is the same across sites) by specifying a model in which

¢ We also examined the multi-level nature of the data further. Because
currently multi-level SEM in lavaan is limited to list-wise deletion, it was
not possible to examine the full multi-level SEM. Thus, to examine how
the results were influenced by Study we first created an AC factor com-
posite for each individual. Next, we constructed a linear mixed-effect
model predicting the mean AC factor composite with a random intercept
(i.e., a null model). Observations were nested within Study. Using this
model, we calculated the intraclass correlation coefficient (ICC), a ratio of
between group variance relative to the total variance that ranges from 0.0
to 1.0. Large ICC values indicate a strong relationship between randomly
chosen pairs of observations in the same group (i.e., greater degree of
dependence attributed to Study). Results revealed a small ICC of .041,
meaning 4.1% of the variance in AC scores was between studies. As such,
the vast majority of variance in AC scores was at the individual level.
However, we should note that small ICC values can give rise to inflated
Type I error when one does not account for the grouping variable in their
analysis—depending on the number of groups and the sample size within
each group. To examine the effects of Study on the results, we allowed
intercepts to vary by Study. Hence the influence of Study (and the potential
Type I error inflation) was effectively zeroed out as far as fixed effects are
concerned. Importantly, when adding a WMC composite as a predictor, the
linear mixed-effect model specified above revealed a significant moderate
relationship between AC and WMC, B = .22, 95% CI [0.19, 0.26],
1(2524) = 11.69, p < .001. The relation between AC and WMC was the
same when not accounting for Study, B = .22, 95% CI [0.18, 0.26],
1(2525) = 11.31, p < .001. Thus, clustering by Study did not seem to
influence the results.
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antisaccade, Stroop RT difference score, Stroop incongruent ac-
curacy, flanker RT difference score, flanker incongruent accuracy,
and PVT loaded on the AC factor and the three complex span tasks
loaded on the WMC factor. Note that we excluded the SART from
these models given that it was only administered at the University
of Oregon. Residual variances for operation span and reading span
were allowed to correlate as were residual variances for Stroop and
flanker variables as before. Site was specified as the grouping
variable. There were 844 participants from the University of Geor-
gia and 2238 from the University of Oregon. We estimated missing
data with full information maximum likelihood. The overall fit of
the model was good, x*(46) = 124.16, p < .001, RMSEA = .03
[.026, .044], CFI = .97, TLI = .95, SRMR = .04, suggesting
configural invariance such that the same overall factor structure
was seen across sites. Shown in Figure 5 are the models for both
the University of Georgia and the University of Oregon separately.
As can be seen, many of the factor loadings were similar across
sites, and the correlation between AC and WMC was very similar
across sites. Next, we examined metric invariance, which is
whether the factor loadings across sites are equal. To examine this,
we specified the same model as before but now constrained the
factor loadings to be equal across sites. The overall fit of the model
was good, x*(53) = 166.35, p < .001, RMSEA = .04 [.031, .044],
CFI = .96, TLI = .94, SRMR = .04. To demonstrate metric
invariance the fit of the model should not be significantly worse
than the configural invariance model. Examining differences in
model fit via a difference in x> suggests that the metric invariance
model fit worse than the configural invariance model, Ax*(7) =
42.19, p < .001. However, with large samples sizes such as the
current study even small differences will tend to be significant.
Thus, an examination of the other fit indices is needed. Specifi-
cally, CFI, TFI, and RMSEA all dropped by only .01, suggesting
that the models were sufficiently similar (Rutkowski & Svetina,
2014). Furthermore, Hildebrandt et al. (2009) suggested that the
Root Deterioration per Restriction index (RDR; Browne & Du
Toit, 1992) could be used to assess model fit with larger sample
sizes with values less than .05 indicating that differences in fit are
minor (similar to RMSEA). The RDR index was .04, suggesting
that differences in fit were relatively minor. Thus, there was
evidence in the data for metric invariance as well. Our final model
tested an even more restricted model in which we specified that not
only should the factor loadings be equal across sites, but so should
the correlation between the factors. The overall fit of the model
was good, x*(54) = 166.46, p < .001, RMSEA = .037 [.03, .043],
CFI = .96, TLI = .94, SRMR = .04. As with the prior model, this
model fit worse than the configural model using a x? difference
test, Ax*(8) = 42.3, p < .001. However, similar to the prior model
CFI, TFI, and RMSEA all dropped by only .01 and RDR was .04,
suggesting that differences in fit were relatively minor. Thus,
overall these results suggest that the model, factor loadings, and
factor correlations were generally similar across sites.

Discussion

In the current study data were pooled across multiple prior
studies conducted in our laboratory over more than a decade to
examine relations among AC measures and whether they are
related to WMC. In the large combined dataset we addressed four
primary questions. (a) Are AC tasks reliable? (b) Are AC tasks

Figure 5

Confirmatory Factor Analysis Model for Working Memory
Capacity (WMC) and Attention Control (AC) for Each
Site

0.53

0.51

Note. (a) Data from University of Georgia. (b) Data from University
of Oregon. Paths connecting latent variables (circles) to each other
represent the correlations between the constructs and the numbers
from the latent variables to the manifest variables (squares) repre-
sent the loadings of each task onto the latent variable. Solid paths
are significant at the p < .05 level, whereas dashed paths are not
significant. Ospan = operation span; Symspan = symmetry span;
Rspan = reading span; Anti = antisaccade; Stroop = Stroop effect;
Strooplac = accuracy on incongruent trials in Stroop; Flanker =
flanker effect; Flankerlac = accuracy on incongruent trials in
Flanker; PVT = psychomotor vigilance task.
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related to one another at the zero-order level? (c) Do the AC tasks
load onto a general AC factor? And (d) is AC related to WMC? In
terms of the first two questions, the results suggested that most of
the AC measures had generally acceptable estimates of reliability
(although the Stroop RT difference score had poor reliability;
average split-half reliability for all AC measures = .74) and most
of the AC measures were weakly to moderately correlated with
one another. In particular, the average absolute correlation among
the AC measures ranged from r = .15 to .20. These results are
consistent with two other recent large scale latent variable studies
(Redick et al., 2016; average absolute correlation r = .23; Kane et
al., 2016; average absolute correlation r = .14) suggesting that
various AC measures are weakly to moderately correlated with one
another. Given these weak to moderate relations, one might con-
clude that there is insufficient shared variance across the tasks to
suggest a common AC construct. However, we note that similarly
weak to moderate relations are seen when comparing various
WMC tasks. Specifically, prior research has suggested that span
(both complex and simple span) measures of WMC are weakly
related to n-back measures of WMC (Redick & Lindsey, 2013).
For example, Redick and Lindsey (2013) found that the meta-
analytic correlation between complex span and n-back across
multiple studies was r+ = .20, and the correlations in the indi-
vidual studies ranged from —.07 to .50. Thus, two putative mea-
sures of WMC demonstrate weak to moderate relations. A similar
wide range of correlations are seen between complex span mea-
sures and visual arrays tasks. For example, Unsworth et al. (2014)
reported a correlation of .07 between operation span and visual
arrays, whereas Shipstead et al. (2015) reported a correlation of .43
between the same tasks. To get a sense of the overall relation
between these two WMC tasks we computed the average correla-
tion across multiple published and unpublished studies which have
used these two measures (e.g., Chuderski & Jastrzebski, 2018;
Redick et al., 2016; Robison & Unsworth, 2017b; Shipstead et al.,
2014, 2015; Unsworth et al., 2014). The resulting average corre-
lation was r = .25 (N = 3099). The meta-analytic correlation was
r+ = .26. Similar to relations seen between complex span and
n-back, measures of complex span and visual arrays tasks demon-
strated only moderate relations. These results suggest that dispa-
rate measures of WMC tend to be moderately related similar to
what is seen with the AC measures. Rather than taking these weak
to moderate relations as evidence against general factors, our
interpretation is that both AC and WMC represent broad higher-
order factors composed of more task/process specific lower-order
factors. When factors are represented by a broad collection of tasks
then we might expect the relations among the tasks to be weaker
than when the factors are composed of largely similar tasks (such
as the WMC factor in the current study which is based only on
complex span tasks). Overall, we need to be more realistic about
the magnitude of correlations (e.g., Funder & Ozer, 2019; Gignac
& Szodorai, 2016) across various tasks that rely on a number of
processes for performance.

In terms of the third and fourth questions, the results suggested
across multiple different models that all of the AC measures loaded
significantly on the AC factor and most of the tasks (with the excep-
tion of the Stroop variables) loaded moderately well on the AC factor.
These loadings remained largely unchanged when various measures
were excluded from the models. In particular, when excluding the
antisaccade task from the models, the overall loadings remained

largely the same suggesting that the AC factor was not simply an
antisaccade factor. Excluding other measures resulted in largely sim-
ilar results. Similarly, relying on list-wise deletion rather than full
information maximum likelihood resulted in very similar results.
Importantly, in all models, AC and WMC were significantly related
around .50 consistent with many prior studies, thereby demonstrating
criterion validity for AC. Across many different models the results
were remarkably similar in demonstrating consistent factor loading
and relations between the AC and WMC factors. Furthermore, WMC
was weakly to moderately related to most of the individual AC
measures. Collectively, these results provide important evidence for
the notion that there is a coherent AC factor which is related to WMC.

Why Are There Discrepancies Across Studies?

Although the current results suggest evidence for AC as a psycho-
metric construct, several recent studies have been unable to find a
coherent AC factor (e.g., De Simoni & von Bastian, 2018; Girtner &
Strobel, 2019; Keye et al., 2009; Krumm et al., 2009; Rey-Mermet et
al.,, 2018, 2019, 2020). Naturally, we need to ask why there are
discrepancies across studies. That is, why do some studies find evi-
dence for an AC factor, yet other studies find weak or no evidence for
an AC factor? As noted previously, one commonality across studies
that fail to find an AC factor is that these studies relied predominantly
on difference score measures from conflict tasks (either RT difference
scores or accuracy difference scores; De Simoni & von Bastian, 2018;
Girtner & Strobel, 2019; Rey-Mermet et al., 2018, 2019, 2020;
although see Keye et al., 2009; Rey-Mermet et al., 2018, 2019 for an
additional bifactor approach). In each of these studies, more than two
thirds of the AC measures were difference scores. In contrast, most of
the studies that do find evidence for an AC factor have difference
scores as less than a third of measures (an exception to this is Kane et
al., 2016 in which many of the measures were difference scores). As
noted previously, difference scores tend to have a number of psycho-
metric issues associated with them including the potential for low
between-participants variability, poor reliability, and high measure-
ment error which can result in low correlations and an overall inability
to find a robust factor (e.g., Draheim et al., 2019; Hedge et al., 2018;
Rouder et al., 2019). We examined this notion and found that when
relying on small sample sizes and an AC factor composed of only
antisaccade accuracy, Stroop RT difference score, and flanker RT
difference score that wildly different results can be found with some
samples resulting in an AC factor and other samples resulting in near
zero correlations among the tasks and an inability to find an AC
factor. Indeed, in our simulations we found that roughly 16% of the
time the model failed to converge due to low correlations among these
AC measures. Furthermore, this AC factor tended to have the lowest
estimates of factor reliability. Thus, one potential explanation for
discrepancies across studies is that studies that have been unable to
find an AC factor primarily relied on difference scores from conflict
tasks whereas studies that have found an AC factor relied more on a
mix of measures (e.g., Chuderski & Jastrzebski, 2018; Draheim et al.,
2019; Friedman et al., 2008; MacKillop et al., 2016; McVay & Kane,
2012; Miyake et al., 2000; Redick et al., 2016; Unsworth & Spillers,
2010; Unsworth & McMillan, 2014; Venables et al., 2018; Von
Gunten et al., 2019). As such, low-powered studies that rely primarily
on difference scores are unlikely to find a coherent AC factor (see also
Rouder et al., 2019). Additionally, by focusing primarily on conflict
effects (based on differences scores), it is likely that additional im-
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portant AC variance (e.g., goal maintenance and fluctuations of at-
tention) is being missed.

There are also likely subtle differences across studies in terms of
task construction, samples, instructions to participants, data process-
ing pipelines, and other informal laboratory practices (e.g., Brennink-
meijer et al., 2019). For example, in several studies Rey-Mermet and
colleagues (Rey-Mermet et al., 2018, 2019, 2020) have tried to reduce
potential influences from episodic memory and associative learning
by ensuring that there were no trial-to-trial repetitions of the same
stimulus and by counterbalancing aspects of the task including trial
types and response keys. Other studies have typically not used these
constraints, thus variation in task construction could be a potential
reason for discrepancies across studies. Additionally, in several stud-
ies Rey-Mermet and colleagues (Rey-Mermet et al., 2018, 2019,
2020) have used a procedure to calibrate target presentation times
(i.e., how long the target appeared onscreen before being masked) for
each individual’s antisaccade trials based on their performance on a
prior block of prosaccade trials. Thus, target presentation times for
antisaccade trials were different across participants in these studies. In
contrast, nearly all other studies have used the same target presenta-
tion times for antisaccade trials for all participants. Furthermore,
Rey-Mermet and colleagues (Rey-Mermet et al., 2019; Rey-Mermet
et al., 2020) have used a difference score between antisaccade and
prosaccade trials as the primary antisaccade measure, whereas nearly
all other studies have simply used error rates or proportion correct on
the antisaccade. Thus, differences in how the tasks are constructed and
differences in the measures used could potentially result in discrep-
ancies across studies.

Additionally, some studies that have found a coherent AC factor
have tended to use variants of the Stroop task (color-word, spatial, and
number Stroop) in which there is a higher proportion of congruent
trials than incongruent trials (e.g., the current data; Chuderski &
Jastrzebski, 2018; Kane et al., 2016; Redick et al., 2016; Shipstead et
al., 2014). Studies that have tended not to find a coherent AC factor,
however, have tended to use variants of the Stroop in which propor-
tion congruency is equal (e.g., De Simoni & von Bastian, 2018;
Girtner & Strobel, 2019; Rey-Mermet et al., 2018, 2019, 2020).
Previous research has suggested that relations between WMC and the
Stroop effect tend to arise in conditions where there is a high propor-
tion of congruent trials relative to incongruent trials, and thus the
demands for active goal maintenance are high (Kane & Engle, 2003;
Hutchison, 2011; Long & Prat, 2002; Meier & Kane, 2013; Morey et
al., 2012). Thus, differences in proportion congruency in the Stroop
task could also influence the relations. Although it should be noted
that some studies that have found a coherent AC factor used variants
of the Stroop with equal numbers of congruent and incongruent trials
(e.g., Friedman & Miyake, 2004; Von Gunten et al., 2019). Relatedly,
studies that have found weak to near zero correlations between AC
measures have also sometimes demonstrated smaller Stroop and
flanker effects than studies that tend to find correlations between AC
measures. For example, Hedge et al. (2018) reported Stroop effects
ranging from 61-91 ms (SDs 34-51) and flanker effects ranging from
35-46 ms (SDs 34-51). Similarly, Gértner and Strobel (2019) re-
ported Stroop and flanker effects around 47 ms (SDs 39-52). How-
ever, as seen in Table 1 in the current study, the effects were much
larger (Stroop = 148 ms, SD = 97, flanker = 114 ms, SD = 68).
Large effects are seen in other studies demonstrating correlations
among the AC measures (e.g., Friedman & Miyake, 2004; Redick et
al., 2016; Shipstead et al., 2014; Von Gunten et al., 2019). Again,

differences in task construction (such as total number of trials and
proportion congruency) could be influencing the magnitude of the
effects as well as the amount of between-subjects variability which
could then influence relations among the AC tasks.

As mentioned above, another potential difference that could give
rise to discrepancies across studies are the samples used. In particular,
some studies that have failed to find a coherent AC factor have
utilized students from relatively selective universities (e.g., De Simoni
& von Bastian, 2018; Rey-Mermet et al., 2019; Rey-Mermet et al.,
2020), whereas some studies that have found a coherent AC factor
have utilized students from less selective universities (e.g., the current
data; Chuderski & Jastrzebski, 2018; Kane et al., 2016; Von Gunten
et al., 2019) or have used a combination of students and community
participants (e.g., Draheim et al., 2020; Redick et al., 2016; Shipstead
et al., 2014). When participants are sampled from a restricted range,
abilities tend to make a small contribution to any observed correla-
tions (e.g., Deary et al., 1996). Instead, the variability that is detected
is more likely due to task-specific skills. Thus, the ability to find
already small relations is reduced even further. Although it should be
noted that some studies that have failed to find a coherent AC factor
do find typical strong latent correlations between WMC and fluid
intelligence (e.g., De Simoni & von Bastian, 2018; Rey-Mermet et al.,
2019), suggesting there is enough variability in abilities to detect these
relations. Future research is needed to examine how potential differ-
ences in sample characteristics influence the ability to find a coherent
AC factor.

There seem to be a number of differences between studies that have
consistently demonstrated a coherent AC factor versus those that have
failed to find a coherent AC factor. It is unlikely that any one factor
is responsible for discrepancies across studies. As such, it may be
difficult to pinpoint potential reasons for discrepant results as multiple
factors could be at play. What seems needed is an adversarial collab-
oration between groups that typically find an AC factor and groups
that typically fail to find such a factor. In such a study, participants
from different sites would perform a large battery of AC, WMC, and
potentially other tasks. Different variants of AC tasks would be given
to examine how task construction and different measures influence
the ability to find a coherent AC factor and whether differences in
samples influence the relations.

Despite discrepancies across some studies, the overall bulk of
evidence across many latent variable studies suggests the presence of
a coherent AC factor that is related to WMC. Future research should
be mindful that factor analytic studies of AC are still in their infancy
compared with other cognitive abilities. As such, additional research
is needed to better understand the structure of AC abilities.

Limitations and Future Directions

The current results provide important information on the nature of
AC as an individual differences construct. At the same time, there are
a number of limitations which need to be addressed. For example, all
of the current data come from studies conducted in our laboratory
over the last 10 plus years, and thus this is not a comprehensive
analysis of all existing studies that have been done on this topic (as
you might find in a meta-analysis). There are clear benefits in doing
mega-analyses of the type done in the current study. These include
increased sample sizes, greater power, and greater precision in detect-
ing the effects of interest. At the same time there are limitations in
mega-analyses in that pooling data across multiple different studies
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can lead to heterogeneity across the samples and measures (Curran &
Hussong, 2009). For example, although similar samples of partici-
pants were used in each study and each participant performed roughly
the same set of AC and WMC tasks, there are still likely differences
in the studies in terms of when participants were tested and the exact
measures they were tested on. That is, in nearly all of the studies
participants completed other measures including measures of long-
term memory and fluid intelligence. Additionally, task orders were
not fully consistent across studies (although in most of the studies the
tasks were given in the same 2-hr session). It is not known how these
factors could impact the results, and thus it is possible that even with
large sample sizes, there is some noise in the relations attributable to
this heterogeneity. We attempted to examine this issue by examining
differences in the factor structure across sites (University of Georgia
vs. University or Oregon) and found that for the most part there was
evidence for measurement invariance across the sites, suggesting that
AC and WMC were measured similarly at both universities. Of
course, there could still be important differences that could influence
the results. Thus, the current mega-analyses are just one means of
synthesizing a large amount of data. Future latent variable studies with
large sample sizes and a large number of measures are needed to
replicate and extend the current results.

An additional limitation of the current study is that nearly all of the
participants were college students at two comprehensive state univer-
sities. Thus, the current samples are likely composed of more high
ability participants than is ideal. As noted previously, this partial range
restriction of the ability distributions likely resulted in weaker corre-
lations than would be seen with a broader ability range. For example,
Redick et al. (2016) consisted of data from several universities as well
as community volunteers from the Atlanta metro area. Correlations in
this study tended to be larger than those seen in the current data,
suggesting that larger relations will likely be seen when utilizing a
broader ability range (see also Draheim et al., 2020). When examining
relations among AC tasks and their relation with WMC, future re-
search should include a broader range of abilities when possible.

Another limitation of the current study is that we did not fully
assess how processing speed or speed—accuracy trade-offs could
influence the measurement of AC. Specifically, some prior re-
search has suggested that AC measures are confounded with
processing speed (e.g., Jewsbury et al., 2016; Rey-Mermet et al.,
2019) and are influenced by speed—accuracy trade-offs (Draheim
et al., 2019, 2020; Rey-Mermet et al., 2019) which can impact the
measurement of AC. We examined the potential role of processing
speed by including a Baseline RT factor composed of congruent
RTs on the Stroop and flanker tasks along with the fastest RTs on
the psychomotor vigilance task. This latent factor was strongly
related to AC, but demonstrated weaker relations with WMC. In
particular, AC was more strongly related to WMC than the Base-
line RT factor was. We further examined these relations via a
bifactor model in which all of the AC measures and the Baseline
RT measured loaded onto a common factor, and the AC measures
also loaded onto a residual AC factor. The results suggested that
both factors were correlated with WMC. That is, variance in AC
was significantly related to WMC, even when taking into account
shared variance with Baseline RT. Thus, these results suggest that
some of the relation between WMC and AC might be attributable
to shared variance with something like processing speed, but there
is considerable shared variance between WMC and AC when
accounting for Baseline RT. However, we note that the Baseline

RT factor is not necessarily a pure measure of processing speed as
other factors such as fluctuations of attention and goal neglect can
influence these Baseline RT measures (e.g., Kane et al., 2016;
Unsworth, 2015). Thus, some of the shared variance between
WMC and the Baseline RT factor could be due to factors other
than just processing speed. Future research is needed to better
examine these relations with independent processing speed mea-
sures.

It is also important to note that the specific goal in the current
study was to examine relations among AC measures and their
relations with WMC as they have been typically measured in the
past. We are in general agreement with other researchers in sug-
gesting that other constructs such as processing speed need to be
examined and that strategic choices (such as speed-accuracy de-
cisions) during AC tasks (and all other tasks) need to be examined
as additional important sources of variability. At the same time, we
note that no task (and probably no factor) is process pure. That is,
a number of processes are likely influencing performance on AC
and WMC tasks (as well as fluid intelligence tasks). These include
AC, working memory, processing speed, long-term memory, self-
efficacy, task engagement, speed—accuracy trade-off decisions,
task-specific motivation, as well as task-specific strategies to name
a few. The extent to which a collection of similar processes are
influencing performance across similar tasks will result in a factor
that is similarly the result of multiple processes (e.g., Detterman,
1994; Kovacs & Conway, 2016). These issues are not isolated only
to AC tasks, as prior research has suggested that processing speed
and speed—accuracy trade-offs are likely important for perfor-
mance on WMC and fluid intelligence tasks (e.g., Ackerman &
Ellingsen, 2016; Chuderski, 2013; Daneman & Tardif, 1987; Kyl-
lonen, 1994; Kyllonen & Zu, 2016; Lohman, 1989; Phillips &
Rabbitt, 1995; Salthouse, 1996; Wilhelm & Schulze, 2002). Fur-
thermore, prior research has suggested that processing speed mea-
sures (like many measures) are influenced by AC abilities (Carroll,
1993; Cepeda et al., 2013; Horn & Blankson, 2005; Lustig et al.,
2006; Schneider & McGrew, 2012, 2018). Future research is
needed to examine how various processes contribute to perfor-
mance on AC and WMC tasks and how these processes influence
the relation between the two constructs. Furthermore, we are in
agreement with recent proposals suggesting the need to develop
more reliable and valid measures of AC.

A final limitation is that in the Introduction we suggested that
broad AC abilities could be broken down into more specific
abilities such as restraining, constraining, and sustaining attention
and measures of each more specific ability were used in our broad
AC factor. However, we did not explicitly examine whether such
a breakdown of the AC factor is possible. That is, we did not test
whether there are three (and potentially more) AC subfactors
which are correlated with one another and load onto a higher-order
AC factor. We could not test such a model with the current data
given that only one task thought to measure constraining attention
(flanker) was used. To fully test such a notion, multiple measures
of each specific ability would be needed. Furthermore, we note
that some prior evidence suggests the possibility of these distinct
factors. As noted in the Introduction, Kane et al. (2016) found
evidence for distinct restraint and constraint factors that were both
related to WMC (reanalyses of Redick et al., 2016 suggested
similar results). Additionally, in a recent study from our lab
(Unsworth et al., 2020; these data are included in the current



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

is not to be disseminated broadly.

20 UNSWORTH, MILLER, AND ROBISON

mega-analysis) we found evidence for a sustained attention factor
(based on lapses of attention) that was related to a restraint/
constraint factor (—.69) and to WMC (—.34). Thus, there is some
evidence for distinct, yet related AC subfactors. However, no study
to date has examined all three factors at once. Future research
should better examine the notion that there are distinct AC abilities
and how these abilities are related to other constructs.

Conclusions

Collectively the current results suggest that AC measures are
weakly to moderately correlated with one another and all load onto
the same general AC factor. This factor was correlated with WMC
consistent with much prior research and theorizing. The current
mega-analyses provide important evidence on the nature of a
general AC ability, which is related to other critical cognitive
abilities. Future research is needed to further delineate the nature
of AC abilities and place them into the broader context of cogni-
tive abilities.
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Appendix

Additional Models and Estimates of Power

Models With Composite Variables and
List-Wise Deletion

We examined the same series of list-wise deletion models as
seen in Table 5 to see whether similar overall results are found
when utilizing the composite Stroop and flanker variables.
First, we examined relations among antisaccade, flanker, and
PVT, and we specified these three measures to load on the AC
factor (labeled AFP), while the three working memory mea-
sures loaded on the WMC factor. With list-wise deletion there
were 1018 participants available for this model. The overall fit
of the model was good, x2(7) = 8.48, p = .29, RMSEA = .01
[.00, .04], CFI = .99, TLI = .99, SRMR = .01. Next, we
specified a model in which antisaccade, the Stroop composite,
and the flanker composite all loaded onto the AC (or inhibition)
factor (labeled ASF). The overall fit of the model was good,
x>(7) = 13.98, p = .052, RMSEA = .04 [.00, .066], CFI = .99,
TLI = .98, SRMR = .02. Finally, we examined a model in
which antisaccade, Stroop, and PVT loaded on the AC factor
(labeled ASP). The overall fit of the model was good, x*(7) =
20.38, p = .005, RMSEA = .04 [.02, .06], CFI = .99, TLI =
.97, SRMR = .02. Shown in Table Al are the results from the
models. In each model, all of the AC measures loaded signifi-
cantly on the AC factor, and AC and WMC were correlated.
Collectively, these results suggest that using composite vari-
ables that combine RT difference scores and incongruent accu-
racy on Stroop and flanker resulted in higher factor loadings for

Table Al

Standardized Factor Loadings, Standard Errors, and
Correlations Between Constructs for Confirmatory Factor
Analyses With Stroop and Flanker Composite Variables and
List-Wise Deletion

Construct/measure AFP ASF ASP
WMC
Ospan .68 (.05) .83 (.07) .64 (.04)
Symspan .67 (.05) .58 (.06) 71 (.04)
Rspan .63 (.05) .80 (.08) A48 (.04)
AC
Antisaccade .52 (.04) .56 (.06) .60 (.04)
StroopC —.24 (.05) —.26 (.04)
FlankerC —.44 (.04) —.47 (.05)
PVT —.50 (.04) —.41(.04)
WMC-AC r .58 (.05) 46 (.07) .55 (.05)
Note. Standard errors are in parentheses. Ospan = operation span; Syms-

pan = symmetry span; Rspan = reading span; Anti = antisaccade; PVT =
psychomotor vigilance task; StroopComp = composite variable combining
RT Stroop effect with incongruent accuracy; FlankerComp = composite
variable combining RT Flanker effect with incongruent accuracy; AFP =
antisaccade, flanker, and psychomotor vigilance task model; ASF = anti-
saccade, Stroop, and flanker model; ASP = antisaccade, Stroop, and
psychomotor vigilance task model.

these measures on the AC factor, and the overall AC factor was
consistently related to WMC.

(Appendix continues)
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Table A2

Standardized Factor Loadings, Standard Errors, Correlations
Between Constructs, and Model Fits for Confirmatory Factor
Analyses for Alternative Models

Construct/

measure MLR Transformed Outlier
WMC

Ospan .63 (.03) .63 (.03) .62 (.03)

Symspan .68 (.03) .68 (.03) .69 (.03)

Rspan .56 (.03) .56 (.03) .55 (.03)
AC

Antisaccade .59 (.03) .63 (.02) .64 (.03)

Stroop —.21 (.04) —.20 (.03) —.17 (.03)

StroopIlAcc .18 (.04) .15 (.03) .16 (.03)

Flanker —.28 (.04) —.26 (.03) —.24 (.03)

Flankerlacc .34 (.04) .37 (.03) .29 (.03)

PVT —.47 (.03) —.57 (.02) —.50 (.03)

SARTsd —.46 (.05) —.46 (.04) —.42 (.04)

SARTAcc .40 (.04) 40 (.04) 40 (.04)
WMC-AC r .53 (.03) .50 (.03) .49 (.03)
x> (39) 106.28 150.21 146.50
CFI 97 .96 .96
TLI .96 95 95
RMSEA .03 .03 .03
SRMR .04 .04 .04

Note. Standard errors are in parentheses. Ospan = operation span; Syms-
pan = symmetry span; Rspan = reading span; Anti = antisaccade; Stroop =
RT Stroop effect; StrooplAcc = accuracy on incongruent trials in Stroop;
Flanker = RT flanker effect; FlankerIAcc = accuracy on incongruent trials in
Flanker; PVT = psychomotor vigilance task; SARTsd = standard deviation of
reaction times in sustained attention to response task; SARTacc = accuracy on
sustained attention to response task.

Alternative Confirmatory Factor Analyses

Given potential issues with skewed measures and potential
outliers, here we present several alternative confirmatory factor
analyses. As will be seen, all of the models produced results very
similar to those from the overall confirmatory factor analysis seen
in Figure 2 suggesting that the presented results are fairly robust.

Model Using Maximum Likelihood Estimation With
Robust Standard Errors (MLR)

Given potential issues with non-normal distributions with some
of the measures we used maximum likelihood estimation with
robust standard errors (MLR). This is based on the Satorra—Bentler
scaled chi-squared test which is robust to non-normality (Curran et
al., 1996; Satorra & Bentler, 1994). Adjustments with the Satorra-
Bentler test also leads to robust standard errors, p-values, and
confidence intervals. Therefore, we tested a version of the main
confirmatory factor analysis using the Satorra-Bentler scaled chi-
squared test. As shown in Table A2, the fit of the model was
acceptable with factor loadings of the measures and the latent
correlation between WMC and AC being very similar to the main
confirmatory factor analysis.

Model Using Transformed Measures

Another way of dealing with non-normal data is to transform the
skewed measures. Therefore, we transformed the accuracy vari-

Table A3
Estimated Power for Factor Loadings and Factor Correlations
Jor the Simulated Models in Table 6

Construct/measure 180 Sim 120 Sim 360 Sim Acc Sim Comp Sim

WMC
Ospan 98 94 1.00 1.00 99
Symspan 98 94 1.00 1.00 99
Rspan 98 94 1.00 1.00 98
AC
Anti .88 73 99 99 .96
Stroop 43 31 71 .68 .50
Flanker 81 .64 98 98 93
WMC-AC r .88 71 .99 .99 95

Note. Ospan = operation span; Symspan = symmetry span; Rspan =
reading span; Anti = antisaccade.

ables (with an acrsine transformation) and the psychomotor vigi-
lance task (with a log transformation). This resulted in overall
more normal distributions for the measures. As shown in Table
A2, the fit of the model was acceptable with factor loadings of the
measures and the latent correlation between WMC and AC being
very similar to the main confirmatory factor analysis.

Model Excluding Potential Multivariate Outliers

Given potential outliers could influence the results, we also
checked for possible multivariate outliers and excluded partici-
pants with significant Mahalanobis’s d2 values. This resulted in
the removal of data for 34 participants. We then reran the model
with these participants excluded. As shown in Table A2, the fit of
the model was acceptable with factor loadings of the measures and
the latent correlation between WMC and AC being very similar to
the main confirmatory factor analysis. Thus, excluding potential
outliers resulted in very similar overall results.

Estimates of Power for the Simulated Models
in Table 6

We also examined power for the different simulated models
seen in Table 6 with Wang and Rhemtulla’s (in press) pwrSEM
app. We specified the factor loadings and factor correlation based
on the loadings and correlations in the simulated models with 1000
samples per model. These results suggested that similar to the
overall simulation results, that with smaller sample sizes there was
generally insufficient power to reliably detect loadings of the AC
measures onto the AC construct. As sample size increased (or
accuracy or the composite variables were used), power tended to
increase (although power to detect the Stroop loadings were still
insufficient) to more sufficient levels. Increasing the N up to 475
resulted in sufficient power (.81) for the Stroop loadings.
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